
From SuÆx Trees to SuÆx Vetors�Elise Prieur and Thierry LeroqABISSUniversity of Rouen76281 Mont-Saint-Aignan, Franee-mail: felise.prieur,thierry.leroqg�univ-rouen.frAbstrat. We present a �rst formal setting for suÆx vetors that are spaeeonomial alternative data strutures to suÆx trees. We give two linear algo-rithms for onverting a suÆx tree into a suÆx vetor and onversely. We enrihsuÆx vetors with formulas for ounting the number of ourrenes of repeatedsubstrings. We also propose an alternative implementation for suÆx vetorsthat should outperform the existing one.Keywords: SuÆx tree, suÆx vetor, repeats.1 IntrodutionA suÆx vetor is an alternative data struture to a suÆx tree. A suÆx vetor, fora string y, an store, in a redued spae, the same information as in a suÆx treeof y. SuÆx vetors have been introdued by Monostori [4, 5, 6℄ in order to detetplagiarism. The suÆx vetor of the string y onsists in a suession of boxes loatedat some positions on the string y. These boxes are equivalent to the nodes of the suÆxtree of y. Monostori gave an \on-line" linear onstrution algorithm of an extendedsuÆx vetor and a linear algorithm to ompat a vetor.We are the �rst to give a formal setting for suÆx vetors. To do that we desribetwo linear algorithms to onvert a suÆx tree into a suÆx vetor and onversely. Wealso supply suÆx vetors with ounters of the number of ourrenes of repeatedsubstrings for a given length. From pratial experienes, we propose an alternativephysial implementation for the suÆx vetors that should outperform the one pro-posed by Monostori. This artile is organized as follows: Setion 2 introdues thedi�erent notations and quikly realls suÆx trees; Setion 3 introdues suÆx vetors;Setion 4 shows the onversion from a suÆx tree to a suÆx vetor; Setion 5 givesthe onversion from a suÆx vetor to a suÆx tree; Setion 6 presents a method forounting the number of ourrenes of repeated substrings in a string; Setion 7 dis-usses the suÆx vetor implementation and �nally Setion 8 gives our onlusionsand perspetives.2 NotationsLet A be a �nite alphabet. Throughout the artile we will onsider a string y 2 A� oflength n: y = y[0::n� 1℄. We append to y the symbol $ as a terminator whih doesnot belong to A. From now on, y is a string of length n+ 1 �nishing with $.37

Proeedings of the Prague Stringology Conferene '05The suÆx tree T (y) of y is a linear size index struture that ontains all thesuÆxes of y from the empty one to y itself. It an be onstruted by onsideringthe suÆx trie of y (tree ontaining all the suÆxes of y whih edges are labeled byexatly one letter) where all internal nodes with only one hild are removed andwhere remaining suessive edge labels are onatenated. The leaves of the suÆx treeontain the starting position of the suÆx they represent.The total length of all the suÆxes of y an be quadrati, the linear size of the suÆxtree is thus obtained by representing edge labels by pairs (position; length) refereningfators y[position::position+ length� 1℄ of y. The terminator $ ensures that no suÆxof y is an internal fator of y and thus T (y) has exatly n + 1 leaves. Eah internalnode has at least two hildren, leading to at most n internal nodes and thus a linearnumber of nodes overall. This also gives a linear number of edges. Eah edge requiresa onstant spae. Altogether the suÆx tree T (y) of y an be stored in linear size.Figure 1(a) presents T (aatttatttatta$).There exist several linear time suÆx tree onstrution algorithms [3, 7, 1℄ thatextensively use the notion of suÆx links.Eah node p of the tree is identi�ed with the substring obtained by onatenatingthe labels on the unique path from the root to the node p. We represent the existeneof the edge from node p to node q with label (i; `) by Æ(p; (i; `)) = q. We also onsiderTarget(p; a) whih an be de�ned as Æ(p; (i; `)) for y[i℄ = a and ` > 1. For a 2 Aand u 2 A�, if au is a node of T (y) then s(au) = u is the suÆx link of the node au.For instane, in Figure 1:� node 7 in the tree is identi�ed with atttatt,� the edge going from node 3 to node 7 is Æ(att; (4; 4)) = atttatt,� and Target(att; t) = Æ(att; (4; 4)) = atttatt.The right position of the �rst ourrene of the string u in y is denoted byrpos(u; y), for instane rpos(att; aatttatttatta$) = 3.3 SuÆx vetors3.1 Extended suÆx vetorsThe suÆx vetor V(y) of y is a linear representation of the suÆx tree T (y) onsistingin a suession of boxes. These boxes ontain the same information as the nodes ofthe tree, so that all the repeated substrings of y are represented in V(y).Monostori did not give any formal de�nition of the suÆx vetors, he only gavea linear time onstrution algorithm. We will now give a desription of the suÆxvetors.There is a orrespondene between the lines of the boxes of the suÆx vetor andthe nodes of the suÆx tree. Let Bj be the box of the suÆx vetor at position j ofthe string y. The box Bj is onsidered as an array with k lines and 3 olumns. The�rst olumn ontains the depth of the node, the seond one ontains the natural edge.The natural edge of a node p in a box Bj is the position of the box ontaining thenode q suh that Target(p; y[j + 1℄) = q.38

From SuÆx Trees to SuÆx Vetors
(a)

R

0
(0, 1)a

0

3

2

3′

(2, 1)t

(3, 1)t

(2, 2)tt

(1, 13)

7′

2 6
(8, 6)tatta$

(4, 4)tatt

(12, 2)a$

7′′

3 7

5

10

(8, 6)tatta$

(5, 1)a

(6, 2)tt

(12, 2)a$

(13, 1)$

4
8

7′′′

(8, 6)tatta$

(12, 2)a$

7

51

9

(12, 2)a$

(4, 4)tatt

(8, 6)tatta$

(12, 2)a$

5′
11

(5, 1)a

(6, 2)tt

(13, 1)$

12

(13, 1)$

13

(13, 1)$
(b)

Root 0 − 0|2 − 2|13 − 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|3|5 − 5

7|13|12 − 13
6|13|12 − 13
5|13|12 − 13
4|13|12 − 13

3|7|12 − 13
2|7|5 − 5

3|7|13 − 13
2|7|13 − 13

1|13|2 − 3|13 − 13

1

Figure 1: (a) SuÆx tree of the string aatttatttatta$. The edges are labelled bypairs (position; length) and the substrings represented by the pairs. The label of theedge from node 0 to leaf 0 orresponds to the substring atttatttatta$. (b) SuÆxvetor of aatttatttatta$. SuÆx links are represented by dashed arrows.The third olumn of a box Bj ontains the edge lists L. Eah edge L[g℄ of L isstored as a pair (b; e). We use b = L[g℄:b and e = L[g℄:e, b is the beginning of the edge(the position of the �rst harater) and e the end of the edge (the position of the boxontaining the target node). So a box is haraterized by: B[h; 0℄ = depth; B[h; 1℄ =ne; B[h; 2℄ = L for eah 0 6 h 6 k � 1.Inside a box, there are impliit suÆx links from node represented by depth d tonode represented by depth d�1. The depth of the deepest node is also stored in eahbox. Monostori pointed out in [4℄ that the depths in a box are ontinuous.The root of the suÆx tree is represented by a spei� box in the suÆx vetor.ExampleIn the box B3 in the vetor of Figure 1(b), the �rst line indiates that there existsa node representing a substring u of length 3 with rpos(u; y) = 3, so u = att. Itsnatural edge is 7, this means that there is an edge from u suh that Target(u; y[4℄)is a node in B7. The length of this edge is 4 (7-3), so this is the node of depth 7 inB7 whih reognizes atttatt.The list of edges B3[1; 2℄ ontains 12 � 13. This means that there is one edge(di�erent of the natural edge) going out from this node, its label begins at position12 and ends at position 13. The end position is equal to the length of y, so this edgeleads to a leaf.We now present an example of utilization of a suÆx vetor. Let y be the stringaatttatttatta$ and x be the string tatt. We use the suÆx vetor of y (Figure 1(b))to know whether x is a substring of y. In the edge list of the root, there is an edgelabeled (2; 2) and y[2℄ = t, so we follow it and go to the box at position 2. This box39

Proeedings of the Prague Stringology Conferene '05has only one line. As y[3℄ 6= a, we do not follow the natural edge. The only edge inB2[0; 2℄ begins at position 5, y[5℄ = a so we an follow it. It leads to the box B5. Aswe have already read the pre�x ta of x, we onsider the line representing the node ofdepth 2. Sine y[6℄ = t, we follow the natural edge whih leads to the box at position7, so its length is 2. As y[6::7℄ = tt, we have found one ourrene of x in y.3.2 Compat suÆx vetorsWe introdue here the notion of ompat suÆx vetor. A suÆx vetor an be om-pated when, for lines h1 and h2 of the box at position j, the edge list of line h1 isinluded in the edge list of line h2: Bj[h1; 2℄ � Bj[h2; 2℄. In this ase, we just need tostore the list of the line h2 and reate a link between the two lists. These boxes arealled redued boxes. They ontain the number of nodes. To ompat a suÆx vetor,Monostori established three rules (see [4℄). These three ompation rules are:Rule A the node with depth d� 1 has the same number of edges as the node withdepth d and these are the same edges. In this ase we simply set their �rst edgepointers to the same position.Rule B the node with depth d�1 has the same edges as the node with depth d plussome extra edges. In this ase, the list of edges of the node with depth d � 1ontains its own edges and a pointer to the list of edges of the node with depthd.Rule C the node with depth d� 1 has di�erent edges to the node with depth d. Inthis ase, all the edges must be represented in a separate list.These rules are illustrated in Figure 2. Monostori gave a linear time algorithm forompating an extended suÆx vetor.
d−2

d−1

d−3

dRule B

Rule A

Rule C

depths

Figure 2: Representation of the ompation rulesExampleIn the vetor of Figure 1, we note that, in the boxes at positions 5 and 7, only thedepths di�er between the lines. So these boxes ould be ompated storing only the�rst line and the number of lines. The result of the ompation of this suÆx vetoris shown Figure 3.
40

From SuÆx Trees to SuÆx Vetors
Root 0 − 0|2 − 2|13 − 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|3|5 − 5 7|13|12 − 13 4

3|7|12 − 13
2|7|5 − 5

3|7|13 − 13 2

1|13|2 − 3|13 − 13Figure 3: Compat suÆx vetor of the string aatttatttatta$.4 Converting a suÆx tree into a suÆx vetor4.1 MethodWe �rst outline the priniple of the onversion of a suÆx tree into an extended suÆxvetor by giving some propositions. The �rst one establishes the orrespondenebetween an internal node in the suÆx tree and a line in a box in the extended suÆxvetor.Proposition 4.1. Let p be an internal node of T (y) suh that y[j � d + 1::j℄ is the�rst ourrene of the substring represented by p. This implies that there exists a boxat position j in the suÆx vetor V(y) and a line h in Bj suh that Bj[h; 0℄ = d.ProofLet u 2 T (y) be a node of the suÆx tree of the string y, u is a substring of y.When u is a node it means that it has at least two ourrenes in y, this implies thatu is represented in V(y) sine all the repeated substrings of y are represented in V(y).We denote by j = rpos(u; y) the right position of the �rst ourrene of u in y.So, there exists a box Bj at position j in the vetor. In this box, there exists a lineh suh that Bj[h; 0℄ = juj. If u = y[j � d+ 1::j℄, we have Bj[h; 0℄ = d.Line h is suh that among all the substrings w 2 T (y) suh that rpos(w; y) = j,u is the (h+ 1)-th longest one.ExampleIn the tree of Figure 1, node 5 an be identi�ed with the substring u = tta of yfor whih rpos(u; y) = 5. This node veri�es Proposition 4.1 sine the �rst line of thebox B5 in the vetor represents a node of depth 3 (B5[0; 0℄ = 3 and jttaj = 3).41

Proeedings of the Prague Stringology Conferene '05The next proposition establishes the orrespondene between an edge in the suÆxtree and either the natural edge or one edge in an edge list of the suÆx vetor.Proposition 4.2. Let (i; `) be an edge of T (y) suh that Æ(p; (i; `)) = q where p andq are nodes of the suÆx tree. Node p is suh that y[j�d+1::j℄ is the �rst ourreneof the substring represented by p. Two ases an arise:1. (i; `) is the natural edge of p (y[i℄ = y[j + 1℄), then Bj[h; 1℄ = j + `;2. (i; `) is an edge suh that y[i℄ 6= y[j+1℄ then there exists a pair (b; e) in Bj[h; 2℄suh that b = i and e = i+ `� 1.ProofNode p satis�es Proposition 4.1.1. The natural edge:Considering the substring u = y[j� d+1::j℄ the edge beginning with the lettery[j+1℄ gives that there exists a node at position rpos(Target(u; y[j+1℄); y) =j + `. The number j + ` is either the length of y (so the edge leads to aleaf) or the right position of the substring u � y[j + 1::j + `℄. In the latterase, after Proposition 4.1, there exists a box at position j + `. Thus, j + ` isobtained following the natural edge of the node at line h in Bj. This impliesthat Bj[h; 1℄ = j + `.2. The others edges:Considering Target(u; y[i℄) = q suh that rpos(Target(u; y[i℄); y) = i+ `� 1with y[i℄ 6= y[j + 1℄. The number i + ` � 1 is either the length of y (so theedge leads to a leaf) or the right position of the substring u � y[i::i + ` � 1℄.In the latter ase, after Proposition 4.1, there exists a box at position i + ` �1. Then, in box Bj there exists an edge L[g℄ 2 Bj[h; 2℄ suh that L[g℄:e =rpos(Target(u; y[i℄); y) = i + ` � 1 and L[g℄:b = L[g℄:e � jTarget(u; y[i℄)j+1 + juj = i.ExampleIn the tree of Figure 1(a), there is an edge going out from node 5 beginning withy[6℄ = t and labeled by (6; 2). This node an be identi�ed with the substring u = ttaof y for whih rpos(u; y) = 5. It is represented by the �rst line of B5. We haverpos(Target(tta; y[6℄); y) = rpos(ttatt; y) = 7 so B5[0; 1℄ = 7. This is the naturaledge, this veri�es Proposition 4.2 sine B5[0; 1℄ = 5 + 2 = j + `.Node 5 in the suÆx tree possesses only one edge beginning by a arater inA n fy[6℄g labeled by (13; 1), rpos(Target(tta; $); y) = 13 (this is a leaf) andjTarget(tta; $)j � 1 � jttaj = 0. The seond part of Proposition 4.2 holds be-ause in the box we have: B5[1; 2℄ = L suh that L has one element de�ned byL[0℄:e = 13 and L[0℄:b = 13.In the next proposition, the speial ase of the root is proessed.42

From SuÆx Trees to SuÆx VetorsTree2Vet(T (y)). R is the root of the tree T (y)1 AddRoot(R;V(y))2 for eah hild node p of R suh that p is not a leaf do3 Push(S; p)4 �while not Stak-Empty(S) do5 p Pop(S)6 AddNode(p;V(y))7 for eah hild node q of p suh that q is not a leaf do8 Push(S; q)9 � �return V(y)Figure 4: Algorithm onverting a suÆx tree into a suÆx vetor.Proposition 4.3. Eah edge (i; `) going out from the root of the tree is representedby the pair (i; i + ` � 1) in the edge list of the spei� box of the root of the suÆxvetor.ProofSimilar to the proof of Proposition 4.1.The next two propositions show the orrespondene for the suÆx links.Proposition 4.4 (Theorem 5.1 of [4℄). Let s(u) = v be a suÆx link in T (y) suhthat rpos(u; y) = rpos(v; y) then u and v are represented in the same box of V(y).Proposition 4.5. Let s(u) = v be a suÆx link in T (y) suh that i = rpos(u; y) 6=rpos(v; y) = j then s(Bi) = Bj.ProofThe suÆx links are only de�ned from internal nodes to internal nodes. AfterProposition 4.1, node u is represented in the box at position i and node v in the boxat position j.4.2 AlgorithmWe now desribe the algorithm to get a suÆx vetor from a suÆx tree. For eah nodep of T (y), we need to know the value rpos(p; y). This an be omputed if eah nodep stores its length jpj and the position of the �rst ourrene of p whih orrespondsto the number of the smallest leaf in the subtree rooted at p. This algorithm is basedon a depth-�rst searh of the suÆx tree. It ensures the visit of all the nodes of thesuÆx tree. We use a stak S to visit the nodes (see Figure 4).First, the algorithm proesses the root beause, in the vetor, the root is notrepresented as the other nodes. The funtion AddRoot, alled line 1 in Figure 4,adds all the edges going out from the root of the tree in the root list of the suÆxvetor. It is desribed Figure 5. 43

Proeedings of the Prague Stringology Conferene '05
AddRoot(R;V(y)). LR is the list representing the root of V(y)1 LR �2 for eah edge (i; `) going out from R do3 Insert((i; i + `� 1); LR)�Figure 5: Algorithm adding the root of a suÆx tree into a suÆx vetor.

AddNode(p;V(y))1 j rpos(p; y)2 if �Bj then3 Create(Bj)4 h 05 else h k. k is the number of lines in Bj6 k k + 17 �Bj[h; 0℄ jpj8 for eah edge (i; `) going out from p do9 if y[i℄ = y[j + 1℄ then. this is the natural edge10 Bj[h; 1℄ j + `11 else Insert((i; i + `� 1); Bj[h; 2℄)12 if j 6= rpos(s(p); y) then13 s(Bj) Brpos(s(p);y)� �Figure 6: Algorithm adding a node of a suÆx tree into a suÆx vetor.
44

From SuÆx Trees to SuÆx VetorsThen, for eah node p of the tree, we add its equivalent in the vetor: we inserta line in a box at position rpos(p; y) in the vetor and if the box does not exist, wereate it with the orret line. This funtion is detailed in Figure 6.Theorem 4.1. The algorithm Tree2Vet(T (y)) orretly omputes V(y) in timeO(jyj)ProofThe orretness of the algorithm omes from Propositions 4.1 to 4.5.Eah node and eah edge of the suÆx tree are proessed only one. The operationsper node and per edge take a onstant time. Sine the number of edges and nodes ofthe suÆx tree is linear, the result on the running time follows.5 Converting a suÆx vetor into a suÆx tree5.1 MethodWe now show the onversion from an extended suÆx vetor to a suÆx tree. The nextproposition deals with the internal nodes.Proposition 5.1. Eah line h of a box Bj in the suÆx vetor of y an be assoiatedto an internal node of the suÆx tree of y.ProofLet u be the substring of y suh that u = y[j �Bj[h; 0℄ + 1::j℄. If there is a line hin a box Bj it means that u � y[j + 1::Bj[h; 1℄℄ and u � y[L[0℄:e::L[0℄:b℄ are fators of ywith L[0℄ 2 Bj[h; 2℄ and y[j + 1℄ 6= y[L[0℄:e℄. This means that u has two ourrenesin y followed by two di�erent letters whih implies that u represents an internal nodein T (y).ExampleIn the box B5 of Figure 1(b), B5[0; 0℄ = 3 indiates that the substring u =y[5 � 3 + 1::5℄ = y[3::5℄ is represented in the �rst line of this box. This string istta, it orresponds to node 5 in the suÆx tree of y.The three following propositions deal with the edges.Proposition 5.2. Eah value Bj[h; 1℄ of a line h of a box Bj in the suÆx vetor ofy an be assoiated to an edge of the suÆx tree of y.ProofLet u be the substring of y suh that u = y[j � Bj[h; 0℄ + 1::j℄. There exists anedge in the tree suh that Æ(u; (j+1; Bj[h; 1℄� j)) = y[j�Bj[h; 0℄+1::Bj[h; 1℄℄. Thusy[j � Bj[h; 0℄ + 1::Bj[h; 1℄℄ is in T (y), it an be an internal node or a leaf.ExampleIn the box B5 of Figure 1(b), the seond olumn of the �rst line means that we ango to position 7 following an edge starting from position 6, this edge is Æ(tta; (6; 2))in T (y). 45

Proeedings of the Prague Stringology Conferene '05Proposition 5.3. Eah pair (b; e) in a edge list of a line h of a box Bj in the suÆxvetor of y an be assoiated to an edge of the suÆx tree of y.ProofLet u be the substring of y suh that u = y[j � Bj[h; 0℄ + 1::j℄. There exists anedge in the tree suh that Æ(u; (b; e� b + 1)) = u � y[e::b℄. Thus u � y[e::b℄ is in T (y),it an be an internal node or a leaf.ExampleThe third olumn of the �rst line ofB5 of Figure 1(b) has only one edge, L[0℄:b = 13and L[0℄:e = 13 (L[0℄:e = jyj means that this edge leads to a leaf). We have to verifythat there exists an edge suh that Æ(tta; (L[0℄:b; L[0℄:e�L[0℄:b+1)) = Æ(tta; (13; 1))in the tree. The node 5, whih reognizes the same substring as the �rst line of B5,has an edge labeled (13; 1) going out to a leaf. We showed the equivalene betweenthe node 5 in the tree and the �rst line of B5 in the vetor.Proposition 5.4. Eah pair (b; e) in a edge list of the root the suÆx vetor of y anbe assoiated to an edge of the suÆx tree of y.ProofSimilar to Proposition 5.3.The next proposition deals with the leaves.Proposition 5.5. The leaves of the suÆx tree T (y) an be retrieved from the suÆxvetor V(y).ProofThis is a diret onsequene of Propositions 5.3 to 5.5 and the fat that there isexatly one edge leading to eah leaf.The two following propositions deal with the suÆx links.Proposition 5.6 (Theorem 5.1 of [4℄). In a box Bj of k lines the suÆx link ofthe node represented by the line h points to the node represented by the line h+1 for0 6 h < k � 1.Proposition 5.7. In a box Bj of k lines the suÆx link of the node represented by theline k � 1 points to s(Bj).ProofBy onstrution.5.2 AlgorithmWe give in this setion an algorithm that omputes a suÆx tree from an extendedsuÆx vetor for a string y. It �rst proesses the root box of the suÆx vetor and thenproesses sequentially eah remaining box of the vetor. For eah box it sequentiallyproesses eah lines (see Figure 7). 46

From SuÆx Trees to SuÆx VetorsVet2Tree(V(y))1 R new node2 for eah (b; e) in the edge list of the root box of V(y) do3 p new node at depth e� b + 1 at position e4 Æ(R; (b; e� b + 1)) p5 �for j 0 to n do. k is the number of lines of the box Bj. p is the node previously reated at depth Bj[k � 1; 0℄ at position j6 q new node at depth Bj[k � 1; 0℄ +Bj[k � 1; 1℄� j + 1 at position Bj[k � 1; 1℄7 Æ(p; (j + 1; Bj[h; 1℄� j + 1)) q8 r p9 for eah pair (b; e) 2 Bj[k � 1; 2℄ do10 q new node at depth Bj[k � 1; 0℄ + e� b + 1 at position e11 Æ(p; (b; e� b + 1)) q12 �s(p) s(Bj)13 for h k � 2 to 0 do. p is the node previously reated at depth Bj[h; 0℄ at position j14 q new node at depth Bj[h; 0℄ +Bj[h; 1℄� j + 1 at position Bj[h; 1℄15 Æ(p; (j + 1; Bj[h; 1℄� j + 1)) q16 for eah pair (b; e) 2 Bj[h; 2℄ do17 q new node at depth Bj[h; 0℄ + e� b + 1 at position e18 Æ(p; (b; e� b + 1)) q19 �s(r) p20 r p21 � �return T (y)Figure 7: Algorithm onverting a suÆx vetor into a suÆx tree.Theorem 5.1. The algorithm Vet2Tree(V(y)) orretly omputes T (y) in timeO(jyj).ProofThe orretness of the algorithm omes from Proposition 5.1 to 5.6.The algorithm proesses eah pairs of eah lines of eah boxes of the suÆx vetorwhih orrespond to the edges and the nodes of the suÆx tree whose quantity islinear. The only diÆulty onsists in retrieving a node at depth d for position j. Thisan be realized by storing the largest depth in eah box. All the other operationstake onstant time. The result on the running time follows.6 RepeatsBefore ounting the number of repeats of the substrings of y, we explain some notionsfor the ounting of the number of ourrenes.6.1 Counting the number of ourrenesAs mentioned before, eah line of a box of V(y) is assoiated to a node u in T (y) andthus to a substring of y. Let Bj be a box of V(y), let h be a line of Bj, the line h is47

Proeedings of the Prague Stringology Conferene '05assoiated to the substring u = y[j � Bj[h; 0℄ + 1::j℄. Let nbO(u) be the numberof ourrenes of the substring u. Let nbL(t) be the number of leaves in the subtreerooted at the end of any edge t .Then nbL(t) = (1 if t = jyj;nbO(v) otherwisewhere v is the node in the box Bt suh that t is the end position of the edge goingto node v.We then dedue thatnbO(u) = nbL(ne) + XL[g℄2Bj [h;2℄nbL(L[g℄:e):With this expression, it is easy to obtain a linear algorithm whih adds the valuenbO(u) on eah line of the vetor. This algorithm visits the boxes of the suÆxvetor from right to left and ompletes the lines with nbO(u).6.2 Counting the number of repeatsThe method desribed in this setion allows to ompute for eah substring of y witha given length lg < n, its number of ourrenes in y. Let lpo(lg) be the list of pairs(rpos(u; y); nbO(u)) for all substrings u of y of length lg.The priniple is to visit all the boxes of the suÆx vetor and for eah line h in abox at position j suh that Bj[h; 0℄ > lg to update lpo(lg) using nbO(u) where uis the substring represented by this line.First, we test if the depth of the deepest node of the box we are visiting is largerthan lg. In the ontrary ase, the visit of the box stops. For redued boxes we onlyhave to take into aount the deepest node, whereas in the other boxes we have toproess all the nodes whose depth is larger than lg. We now explain the two di�erentases.Redued box Let us assume that we are proessing the redued box Bj andBj[0; 0℄ = d > lg. This implies this line represents u = y[j � d + 1::j℄. Let j 0 bea position suh that j � d+ 1 6 j 0 6 d� k + 1 and jy[j 0::j℄j > lg (k is the number oflines represented in the box). For eah possible j 0, let v be y[j 0::j 0 + lg� 1℄, either weadd the pair (rpos(v; y); nbO(u)) in the list or we update nbO(v) with nbO(u)if v is already present in lpo.Extended box For eah line h of the extended box Bj suh that Bj[h; 0℄ = d > lg.This implies this line represents u = y[j � d + 1::j℄. Let v be the pre�x of length lgof u, either we add the pair (rpos(v; y); nbO(u)) in the list or we update nbO(v)with nbO(u) if v is already present in lpo.After that, the list lpo(lg) gives the number of ourrenes of repeated substringof y of length lg.
48

From SuÆx Trees to SuÆx Vetors7 Implementation7.1 Monostori's implementationWe now explain the representation used by Monostori to store ompat suÆx vetors(setion 5.4 of [4℄). Eah box ontains the following information:Deepest node The deepest node value is usually small so Monostori proposed tostore it in 1 or 4 bytes. The �rst bit is used to denote the number of bytes needed tostore the value, so the deepest node value is represented with 7 or 31 bits.Number of nodes In a box, we also need the number of nodes value whih issmaller than the deepest node value. The number of nodes an �t into one byte whenthe deepest node value is stored into one byte. So, it is not neessary to use anotherbit to ag as for the depth.SuÆx link The next information stored in a box is the suÆx link. If the number ofnodes is equal to the depth of the deepest node, this means that the smallest depth inthe box is 1. So the suÆx link of the box is impliit to the root. In this representation,the suÆx link is stored anyway beause its �rst bit is used to indiate if the box is aredued one and its seond one is used to indiate if the values of the natural edgeswill need 1 or 4 bytes.Natural edges Then the natural edges are stored in an array alled array of nextnode pointers. We an save spae by storing the length of an edge rather than theend position. If there is one of the lengths of the natural edges of the box whih needto be stored in more than one byte, all of them are stored in 4 bytes.Edges At last, we have to onsider the representation of the edges. An edge isrepresented with its start position and its length. The �rst edge pointer of a nodegives the memory address of the list of edges going out from this node. The �rst bitof a start position of an edge indiates if this edge leads to a leaf. In this ase, thelength of the edge is not stored. The next bit ags whether this is the last edge ofthe list. The third one is used to indiate the number of bytes (1 or 4) required tostore the length of the edge.7.2 CountingTable 1 ompares the spae required by the suÆx vetor with the spae required bythe suÆx tree implemented with Kurtz's method [2℄. It is extrated from Table 5.1in [4℄. Here, we give the results for four �les whih are two English texts (book2 andbible), one C program (prog) and one DNA sequene (eoli). The results aregiven in bytes per symbol of the input sequenes.The measures done by Monostori show that its implementation of the suÆx vetorsis less eÆient for DNA sequenes than for large alphabets. Therefore we performedexperiments on several DNA sequenes. Tables 2 to 6 give the results for �ve of them:� hromosome 4 of S. erevisiae (of length 1,531,931);49

Proeedings of the Prague Stringology Conferene '05Table 1: Comparison of spae requirements of suÆx vetors and suÆx trees.File name File size(in bytes) Bytes/symbolCompat SuÆx Vetor Bytes/symbol Kurtzbook2 610,857 8.61 9.67bible 4,047,393 8.53 7.27prog 39,612 8.63 9.59eoli 4,638,691 12.51 12.56� hromosome 3 of E. oli (of length 13,783,270);� hromosome 5 of E. oli (of length 20,922,241);� hromosome 2 of A. thaliana (of length 19,847,294);� hromosome 4 of A. thaliana (of length 17,790,892).For eah sequene, we build its extended suÆx vetor and reported for eah box:� the number of nodes;� the depth;� the length of the natural edge minus 1 (sine it is always at least equal to 1);and for eah edge list of eah box:� the next position;� the di�erene between the next position and the position of the box minus 2(sine it is always at least equal to 2);� the length of the edge minus 1 (sine it is always at least equal to 1).For all the values we ounted the number of them that an �t between:� 1 and 6 bits;� 7 and 14 bits;� 15 and 22 bits;� 23 and 30 bits.The idea is, instead of using only one ag bit and use 1 or 4 bytes for representingthe di�erent objets, to use two ag bits and 1, 2, 3 or 4 bytes for representing them.The tables learly show that this approah will save a large number of bytes in allases. Of ourse, storing the di�erene between the next position and the positionof the box rather than the next position always enables to save storage spae. Theatual total gain is not yet ompletely measurable sine, to keep a diret aess toany node in a box, all the natural edges in a box are stored with the spae neessaryfor the largest natural edge. We an now present an alternative implementation.50

From SuÆx Trees to SuÆx VetorsTable 2: Counts for hromosome 4 of S. erevisiae. It ontains 1,531,931 base pairs.1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bitsNumber of nodes 501,378 129Depth 875,852 13,924Natural edge 369,501 6497 513,778Next position 55 18,794 1,555,245Di�erene 2539 128,375 1,443,180Edge length 642,254 9143 922,697Table 3: Counts for hromosome 3 of E. oli. It ontains 13,783,270 base pairs.1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bitsNumber of nodes 4,182,237 2283Depth 7,978,520 172,622Natural edge 3,697,663 32,220 4,421,259Next position 2 18,527 4,529,723 9,302,660Di�erene 36,315 439,978 11,548,079 1,826,540Edge length 5,633,779 35,474 8,181,659Table 4: Counts for hromosome 5 of E. oli. It ontains 20,922,241 base pairs.1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bitsNumber of nodes 6,395,182 3224 4Depth 11,998,929 288,722 40,428Natural edge 5,456,836 121,698 5156 6,744,389Next position 8 18,606 4,579,468 16,428,416Di�erene 42,261 485,515 14,355,158 6,143,564Edge length 8,583,613 111,606 2344 12,328,935Table 5: Counts for hromosome 2 of A. thaliana. It ontains 19,847,294 base pairs.1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bitsNumber of nodes 6,429,030 2192Depth 11,499,363 137,572 183,616Natural edge 5,353,725 32,671 6,434,155Next position 61 18,470 4,630,471 15,624,486Di�erene 37,770 426,015 14,124,810 5,691,893Edge length 8,186,302 23,318 12,063,868Table 6: Counts for hromosome 4 of A. thaliana. It ontains 17,790,892 base pairs.1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bitsNumber of nodes 5,809,708 1869Depth 10,203,150 136,807 224,650Natural edge 4,767,148 33,801 5,763,658Next position 61 18,713 4,578,990 13,529,684Di�erene 26,541 474,155 13,353,092 4,273,660Edge length 7,325,278 33,235 10,768,93551

Proeedings of the Prague Stringology Conferene '057.3 An alternative implementationHere, we explain how to use the idea explained in setion 7.2 to redue the spae.Eah box ontains the following information:Deepest node Instead of storing in 1 or 4 bytes, we ould store the depth of thedeepest node in 1, 2, 3 or 4 bytes. This means that we have to use the two �rst bitsto indiate how many bytes we need. So the deepest node value is stored in 6, 14, 22or 30 bits.Number of nodes As mentioned in Setion 7.1, the number of bytes needed tostore the number of nodes depends on the number of bytes of the deepest node value.Then, if we need 6, 14, 22 or 30 bits to store this depth, we ould use respetively 1,2, 3 or 4 bytes to store the number of nodes.SuÆx link Similar to Setion 7.1.Natural edges We an use two ag bits and then 1, 2, 3, or 4 bytes for all thevalues. We store the length of the natural edge minus 1 sine it is always larger than1.Edges Instead of storing the start position of an edge, we ould store the di�erenebetween the start position and the position of the box. For a box at position j andan edge starting at L[g℄:b > j, we store L[g℄:b� j � 2. We an use the same idea asfor the deepest node value to store L[g℄:b� j � 2 and the length of L[g℄� 1 using 1,2, 3 or 4 bytes.The main idea is to redued the spae required with Monstori's implementation forDNA sequenes by storing the data with 2 or 3 bytes instead of 4 when it is possible.To do that we use 2 bits for the needed number of bytes. Tables 2 to 6 show that wean redue the spae in many ases.8 Conlusions and perspetivesWe presented a �rst formal setting for suÆx vetors that are spae eonomial alter-native data strutures to suÆx trees. We gave two linear algorithms for onvertinga suÆx tree into a suÆx vetor and onversely. We enrihed suÆx vetors withformulas for ounting the number of ourrenes of repeated substrings. We �nallyproposed an alternative implementation for suÆx vetors that should outperform theone proposed by Monostori speially for small alphabets and large sequenes.In order to really take advantage of this implementation we are studying an \on-line" linear algorithm for diretly building a ompat suÆx vetor. This should allowto deal eÆiently with huge sequenes suh as human hromosomes.
52

From SuÆx Trees to SuÆx VetorsReferenes[1℄ M. Farah. Optimal suÆx tree onstrution with large alphabets. In Proeedingsof the 38th IEEE Annual Symposium on Foundations of Computer Siene, pages137{143, Miami Beah, FL, 1997.[2℄ S. Kurtz. Reduing the spae requirements of suÆx trees. Software Pratie &Experiene, 29(13):1149{1171, 1999.[3℄ E. M. MCreight. A spae-eonomial suÆx tree onstrution algorithm. Journalof Algorithms, 23(2):262{272, 1976.[4℄ K. Monostori. EÆient Computational Approah to Identifying Overlapping Do-uments in Large Digital Colletions. PhD thesis, Monash University, 2002.[5℄ K. Monostori, A. Zaslavsky, and H. Shmidt. SuÆx vetor: Spae-and-time-eÆient alternative to suÆx trees. In CRPITS '02: Proeedings of the 25th Aus-tralasian Computer Siene Conferene, volume 4, pages 157{166, Melbourne,2002. Australian Computer Soiety, In.[6℄ K. Monostori, A. Zaslavsky, and I. Vajk. SuÆx vetor: A spae-eÆient suÆx treerepresentation. In Proeedings of the 12th International Symposium on Algorithmsand Computation, volume 2223 of Leture Notes in Computer Siene, pages 707{718, Christhurh, New Zealand, 2001. Springer Verlag.[7℄ E. Ukkonen. On-line onstrution of suÆx trees. Algorithmia, 14(3):249{260,1995.

53

