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1 PSI Laboratory (FRE CNRS 2645), INSA de Rouen

2 CISMeF Team, Rouen University Hospital

{Filip.Florea,Alexandrina.Rogozan,Abdelaziz.Bensrhair}@insa-rouen.fr
Stefan.Darmoni@chu-rouen.fr

Keywords :
Cataloguing, Abstracting and Indexing, Classi-

fication, Internet, Content-Based Image Retrieval
(CBIR), Medical Modality Categorization.

1 Introduction

This research work is concerned with the develop-
ment of the French health catalogue CISMeF to as-
sist healthcare professionals, students and general
public in their search for quality health resources.
The CISMeF project (French acronym of Catalogue
and Index of Health On-Line Resources) [5] was ini-
tiated in 1995 in order to meet the users’ need to
find precisely what they are looking for among the
numerous health documents available online 1. CIS-
MeF describes and indexes the most important re-
sources of institutional health information in French.
Indexing is a decisive step for the efficiency of infor-
mation retrieval within the CISMeF catalogue, and
it is also one of the most time consuming tasks for the
librarians, demanding high-level documentary skills.
Indeed, the textual content of resources is manually
annotated with a metadata set and a structured ter-
minology similar to a documentary ontology of the
medical field [6].

Being aware of the medical image importance in
healthcare, we currently aim to enrich the health cat-
alogue CISMeF with an image retrieval engine allow-
ing query by keyword and/or by the visual content.
Therefore, the cataloguing of medical images present
in the CISMeF resources requires not only visual-
feature extraction (i.e. color, form, texture), but also
metadata extraction (i.e. imaging modality, body re-
gion) to be added to the visual content. It is a chal-
lenging idea since existing medical retrieval systems

1http://www.cismef.org

are mostly based on textual queries and annotations
of the medical images [10], whereas those by visual
content are still on a prototype state, dedicated to a
very specific medical context (e.g. pathology of the
lungs) [24] and not always accessible via Internet.
This makes impossible their validation and integra-
tion as effective tools to train or to assist medical
students and healthcare professionals in the diagnos-
ing stage, as well as the acquisition of iconographic
knowledge on various pathologies.

2 Objective

The goal of this paper is the automatic categorization
of medical images according to their corresponding
modalities. This is a process containing 3 stages: a)
the extraction of representative vector features, to
describe image content, b) the selection of the best
features from each subset (minimizing the number of
features and maximizing the discriminative informa-
tion carried by them)(they can be used individually
or combined), and c) the training and classification
of the resulting vectors in the desired classes (i.e. the
desired modalities).

Being applied to an on-line medical resource health
catalogue open to all medical resources, like CISMeF,
we could not focus ourselves on a single modality
problematics.

The paper aims at the extraction of most accurate
medical image modality categorization algorithm,
using texture and statistical global features (with the
perspective of improving the decision by the extrac-
tion and interpretation of textual annotations found
around the images, in complex medical documents).



Table 1: Database Content
Modality no. of images repartition

Angiography 348 23.5%
Ultrasonography 246 16.6%

MRI 373 25.2%
X-ray 126 8.5%

CT scan 295 20%
Scintigraphy 87 5.8%

Total 1475 100%

3 Materiel and methods

3.1 Constitution of a medical image
database

The first step in the implementation of a medical
image categorization algorithm is the constitution of
a representative medical image database.

A list of medical modalities used in daily practice was
constituted by a medical expert from the Rouen Uni-
versity Hospital (RUH) , and implemented in CIS-
MeF terminology as ressources type [6]. The ini-
tials developments and tests were carried out on a
six-modality image database containing: angiogra-
phy, ultra-sonography, magnetic resonance imaging
(MRI), standard radiography, CT scan, and scintig-
raphy. This six were considered as the most frequent
information-bearer modalities used in medical imag-
ing.

This initial image database contains 1475 images ex-
tracted from Radiology, Radio Pediatry and Nuclear
Imaging departaments of RUH. The images are im-
ported from the hospital DICOM internal format,
or secondary digitized, to JPEG format, as they are
mostly found in any medical resource database, on
the Internet. The images don’t have the same di-
mension and quality, being acquired with different
digital or analogical equipments, in different hospital
services, with different parameters, in a time-period
of several years. This results in an increased intra-
modality variability, which means an increased dif-
ficulty of modeling discriminative measures but also
means that the resulting algorithm is more adapted
to real-live practice challenges.

3.2 Categorization algorithm

Region Of Interest Selection. Due to the fact
that each modality-acquisition is applied to a num-
ber of different services inside a health-center, there
is important intra-modality variability. Our purpose
is to extract the criteria that maximize the differ-
ences between the modalities, and minimize (ignore)

those between the examples of the same modality.
The differences between modalities, are diminished
by the presence of the background (which, due to the
digitization process and jpeg compression, is not of
uniform gray-level - can be approximated with a uni-
form texture) and the textual annotations (the text
layer in DICOM format). These textual annotations
are not always present, due to legal constraints, but
when they are, the regions with this text have a rel-
atively resembling texture.

That’s why the extraction of the features that will
differentiate between the classes (modalities) must
be made outside the background/text regions. The
background on the six modalities treated in this pa-
per is either black or white, and it was relatively easy
to extract by tresholding of the gray-level histogram.
The dimension and font of the text annotations in the
images treated were sufficiently close to be approxi-
mated and extracted with a TopHat filter set on the
character’s thickness [Fig. 1].

Once obtained the image without the background
and text a rectangular region must be extracted, that
will maximize the treated information [Fig. 2]. How-
ever, such a process being complex and difficult to
employ, by observation from our experiments, a cen-
tered 512x512 window, of the background/text fil-
tered image was considered, and proved sufficient.

Figure 2: ROI selection

Image features. There always was a debate on
whether global or local features should be used in de-
scribing images. Due to the technical difficulties that
arise when trying to extract features at the object
level from unknown images, and the good, usually
sufficient, performance, of global extracted features,
the general-purpose CBIR systems (like Photobook
[22], QBIC [8]) use them.

This idea is not entirely applicable in medicine, due
to the vastly superior complexity of medical images,
and especially due to the importance of local char-
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Figure 1: Discarding of the text/background information. a).initial image; b).TopHat filtering; c).the image
without the text; d).the image gray-level histogram (the local min are shown in magenta and the local max
in green)(the background approximation for the considered image is highlighted in grey); e).the background
approximation (in white; there are some errors, but they are corrected with some supplemental conditions);
f).the image without the text/background regions

acteristics in deciding the images content (modal-
ity, the anatomical region/biological system, pathol-
ogy) (ex: the angiography, being a radiography-
based sub-modality, could be so alike to a standard-
radiography, that only some local characteristics, like
contrasted vessels, could make the difference). Al-
though, the global features, appear to be sufficiently
discriminative for the categorization of medical im-
ages by modality or anatomical-region [12].

To capture the semantics of images, three main types
of features can be extracted: color, texture and
shape. Historically, color was the most successfully
employed feature in general purpose CBIR. In med-
ical imaging, the color is very seldom present and
when it is, it describes only a fraction of the image in-
formation, rendering the color as a feature, unusable.
To characterize the shapes inside medical images re-
quires a certain amount of apriori knowledge, but
can be proved useful with the extracting of organs or
tumor edges (contours) once the acquiring modality
and the body-region/biological-system are known [2].
Even with this high-level of apriori knowledge pro-
vided, the extraction of shapes can be an illusive one
on some cases (i.e. ultrasonography, even radiogra-
phy), so the shape-based features aren’t appropriate
for automatic modality categorization either. The
texture remains the best suited descriptor and com-
bined with statistical grey-level measures to account
for the different acquisition biases (like contrast and

brightness), proved to be a well suited global descrip-
tor for medical images.

From the large amount of methods developed for
describing texture [14], three were employed based
on performance criteria: Harlick’s grey-level co-
occurrence matrix, the fractal dimension and the Ga-
bor wavelets.

[13] proposed the cooccurrence matrix as a represen-
tation of texture. This approach explore the gray
level spatial dependence of texture. Four cooccur-
rence matrixes were computed, one on each direction
(horizontal, vertical and the two diagonals), and on
each one, four features were extracted: Energy, En-
tropy, Contrast and Homogeneity, producing a 16
feature vector.

[21] made the assumption that textures are fractals
for a certain range of magnifications. He used sta-
tistics of differences of gray levels between pairs of
pixels at varying distances as indicators of the frac-
tal properties of the texture. Fractal dimension is not
an integer in contrast to the dimension in Euclidean
geometry, but a number between 2 and 3; the more
the texture is smooth (respectively rough), the more
the fractal dimension is close to 2 (respectively 3).
We used a modified box-counting texture analysis
technique based on the probability density function
described by [15]. The computing of the fractal di-
mension generates a single feature.



[9] suggested the use of so-called Gabor wavelets for
feature extraction. The Gabor filters, computed at a
certain wavelength and orientation, produce decom-
position by φ orientations and λ scales. We obtain
an φ*λ = 24 level decomposition on witch we com-
pute the mean and standard deviation, resulting a
48 feature vector. Coarse textures will have spectral
energy concentrated at low spatial frequency, while
fine textures will have larger concentrations at high
spatial frequency.

In addition we used features derived from gray-level
statistical measures. The second moment (variance)
is of particular importance because it measures gray-
level contrast and can therefore be used to calculate
descriptors of relative smoothness. We computed
first moment mean, median and mode, second mo-
ment variance, l2norm, third and forth order skew-
ness and kurtosis.

Overall we obtain a vector composed of 72 features.

Feature selection. When applying machine
learning in practical settings the first difficulty is
raised by the feature selection phase for the data at
hand. The basic idea of feature selection algorithms
is searching through all possible combinations of
features in the data to find which subset of features
works best for prediction. The selection is done
by reducing the number of features of the feature
vectors, keeping the most meaningful (features
which together convey sufficient information to
make learning tractable), discriminating ones, and
removing the irrelevant or redundant ones. That
way we can dispose of the false regularities, and
increase the interpretability and efficiency. For
the feature selection phase, two objects must be
set up: a feature evaluator and a search method.
The evaluator determines what method is used
to assign a worth to each subset of features. The
search method determines what style of search is
performed.

The feature selection can be done two ways: 1) using
full training set (the worth of the feature subset is
determined using the full set of training data), or 2)
by cross-validation (the worth of the feature subset
is determined by a process of cross-validation).

In addition, the classifying time grow dramatically
with the number of features, rendering the algorithm
impractical for problems with a large number of fea-
tures. In most cases, in our experiments, with the
feature selection phase activated, minor accuracy de-
creases were noted (1-2%) but the classifying time
was importantly reduced.

In practice, the choice of a learning scheme (the next

phase) is usually far less important than coming up
with a suitable set of features.

We experimented with several evaluators and search
methods:

Evaluators:

• CfsSubsetEval - Evaluates the worth of a subset
of features by considering the individual predic-
tive ability of each feature along with the degree
of redundancy between them; subsets of features
that are highly correlated with the class while
having low inter-correlation are preferred.

• ConsistencySubsetEval - Evaluates the worth of
a subset of features by the level of consistency
in the class values when the training instances
are projected onto the subset of features.

• InfoGainFeatureEval - Evaluates the worth of an
feature by measuring the information gain with
respect to the class. InfoGain(Class,Feature) =
H(Class) - H(Class — Feature).

• GainRatioFeatureEval - Evaluates the worth of
an feature by measuring the gain ratio with re-
spect to the class. GainR(Class, Feature) =
(H(Class) - H(Class — Feature)) / H(Feature).

• SymmetricalUncertFeatureEval- Evaluates the
worth of an feature by measuring the sym-
metrical uncertainty with respect to the class.
SymmU(Class, Feature) = 2 * (H(Class) -
H(Class — Feature)) / H(Class) + H(Feature).

• ChiSquaredFeatureEval - Evaluates the worth
of an feature by computing the value of the chi-
squared statistic with respect to the class.

• PCA - Performs a principal components analysis
and transformation of the data.

• SVMFeatureEval - Evaluates the worth of an
feature by using an SVM classifier.

Search methods:

• BestFirst - Searches the space of feature sub-
sets by greedy hill-climbing augmented with a
backtracking facility.

• GeneticSearch - Performs a search using the sim-
ple genetic algorithm described in [11]

• Ranker - Ranks features by their individual eval-
uations. Use in conjunction with feature evalu-
ators (ReliefF, GainRatio, Entropy etc).



Table 2: Feature selection
BestFirst GeneticSearch Ranker

CfsSubsetEval FS1 FS2 ×
ConsistencySubsetEval FS3 FS4 ×
InfoGainFeatureEval × × FS5

GainRatioFeatureEval × × FS6
SymmetricalUncertFeatureEval × × FS7

ChiSquaredFeatureEval × × FS8
PCA × × FS9

SVMFeatureEval × × FS10

3.3 Selected features classification

For the classification phase we experimented with 5
classifiers:

• Multilayer Perceptron - Multilayer percep-
trons (MLPs) are feedforward neural networks
trained with the standard backpropagation al-
gorithm.

• Support Vector Machines - Implements
John Platt’s sequential minimal optimization al-
gorithm for training a support vector classifier
[23].

• Random Forest - Class for constructing a for-
est of random trees. For more information see
[3]

• Logistic Model Trees - Classifier for build-
ing ’logistic model trees’, which are classifica-
tion trees with logistic regression functions at
the leaves [17].

• K Nearest Neighbors - K-nearest neighbors
classifier [1]

A standard PC architecture was used, with imple-
mentation in MatLAB, for the feature extraction
methods, and Java, for the feature selection and clas-
sification (the Weka Data Mining Machine Learning
Software2).

4 Evaluation

As previously mentioned, five features types were ex-
tracted [Table 3]. The features extracted from the
grey-level histogram, were considered only for com-
parison. The 7 statistical measures and the texture-
based features are forming uneven feature vectors,
ranging from a single feature for the fractal dimen-
sion, to 48 for the Gabor wavelets. These vectors

2www.cs.waikato.ac.nz/ml/weka/

were evaluated separately to show the relevant in-
formation contribution of each one, or combined to
combine the performance.

Eight feature selection methods were applied to this
combined feature vector. [Table 2] shows all the
possible combinations between the Evaluators and
SearchMethods. The first two evaluators, CfsSub-
setEval and ConsistencyEval can be combined with
either BestFirst or GeneticSearch methods. The
other 7 Evaluators are used with the Ranker search
method, that provides an ordered feature vector (i.e.
and not a selected-reduced one), a threshold being
needed for the actual selection. From the initial com-
bined vector of 72 features, we experimented with
the most meaningful 30, 50 and 70 for each of the 7
algorithms that use the Ranker search method.

For the classification stage, the features extracted
from the entire image data-base were used, and a 10-
fold cross-validation scheme was employed. Basically
cross-validation means that you use one part of the
data to build a model, which you then apply to the
other part of the data to assess how well the model
fits the data. k-fold validation means that you divide
the data randomly into k equal sized parts, use k-1
parts to build the model, and the remaining part
to validate. You do this k times, each time using
a different part for the validation. At the extreme
k=N and you have a leave one out approach.

5 Results

[Table 4] shows the precision and time obtained by
the 5 classifiers with each of the features individu-
ally or combined. The features extracted from the
gray-level histogram were considered only for com-
parison, and, indeed, they does not exceed 75.21%.
The Gabor-features obtained the highest precision
from all the individual features, with rates between
74.71% and 84.13%, and the performances of the sta-
tistical measures an the cooccurence matrix are close.
Of course, the statistical measures were intended to
be used in combination with textural measures so the



Table 3: Feature Vectors
name dimension content
histogram 256 [histo1 . . . histo256]
statistical measures 7 [stat1 . . . stat7]
cooccurence 16 [co1 . . . co16]
fractal dimension 1 [fd]
gabor wavelets 48 [gb1 . . . gb48]
combined 72 [stat1 . . . stat7]+[co1 . . . co16]+[fd]+[gb1 . . . gb48]
feature selection on ? ([stat1 . . . stat7]+[co1 . . . co16]+[fd]+[gb1 . . . gb48])FS
the combined vector
FS1 9 [mean, median, mode, l2norm, skewness, gb4, gb12, gb19, gb41]
FS2 20 [mean, median, mode, l2norm, skewness, kurtosis, co4, co16, fd, gb1, gb2,

gb5, gb6, gb8, gb11, gb15, gb21, gb24, gb30, gb38]
FS3 10 [median, mode, l2norm, kurtosis, co10, co11, df, gb1, gb4, gb25]
FS4 23 [mean, mode, co7, co8, co9, co11, df, gb6, gb10, gb11, gb12, gb13, gb15,

gb16, gb19, gb24, gb25, gb30, gb32, gb38, gb41, gb43, gb47]
FS5 72 [l2norm, mean, median, mode, skewness, kurtosis, gb4, gb12, gb11, gb3,

gb5, gb6, gb10, gb9, std, gb24, gb1, gb19, gb16, gb43, gb2, gb23, gb7 ... ]
FS6 72 [mean, median, l2norm, skewness, kurtosis, mode, gb2, gb4, gb9, gb12,

gb30, gb34, gb3, gb11, std, gb22, gb1, gb6, gb5, gb10, gb15, gb18, gb7, ... ]
FS7 72 [mean, median, l2norm, skewness, mode, kurtosis, gb4, gb12, gb11, gb3,

gb9, gb5, gb6, std, gb10, gb2, gb1, gb24, gb16, gb19, gb15, gb23, gb7, ... ]
FS8 72 [l2norm, mean, median, mode, skewness, kurtosis, gb5, gb11, gb4, gb19,

gb12, gb3, gb9, gb10, gb6, std, gb1, gb17, gb21, gb7, gb43, gb23, gb15, ... ]
FS9 12 12*[0.104mean+0.106median-0.12std+0.073mode+0.092l2norm

+0.027skewness+0.022kurtosis+0.02 co1+0.126co2+0.242co3
-0.231co4+0.047co5+0.12 co6+0.241co7-0.234co8+ ...]

FS10 72 [gb41, mean, gb39, gb24, std, co10, gb4, gb23, co4, co1, median, gb44,
gb19, df, mode, gb38, l2norm, gb33, gb5, gb40, gb25, gb12, gb11, co12 ... ]



poorer results for them when used alone, are expli-
quable.

For all the classifiers, considering a combination
of the textual and statistical features, improve the
recognition rate with couple of percents.

The best classification results are obtained with the
MultiLayer Perceptron, resulting nearly 90% of pre-
cision, but at a high time-cost. The SVM classifier
obtained the poorest results, with all the considered
vectors.

From the computing-time point of view, the classi-
fiers employed can be divided in two categories: MLP
and LMT that take even several hours of computa-
tion time (but obtained better classifing results), and
SVM, RF and K-NN that can classify the data in
only a couple of minutes.

The performance of the 10 feature selection meth-
ods and the precision and computing-time obtained
by the 5 classifiers, on the resulting selected feature
vectors, are presented in [Table 5].

The variation of performance between the feature se-
lection methods is rather small, the precisions vary-
ing of approximatively 10% for a classifier. The FS1
obtained the highest precision then classified with a
MLP, and FS2, FS3, FS4 and FS8 obtained similar
performances. FS6 performed the poorest.

For those feature selection algorithms, that used the
”Ranker” search-method, reducing the number of
features always produced a drop in precision. The
variations between the results obtained with 70, 50
or 30 features are not very important, proving that
the most important features are, indeed kept. Of
course the classifying time are significantly reduced.

6 Discussion

[20] raised the modality categorization problem, pre-
senting a frame that decides the modality by analysis
of Required and Frequently Occurring features. The
IRMA project propose a general structure for seman-
tic medical image analysis [18], and recently, body-
region classification results are presented, taking in
consideration multiple modalities but focusing on ra-
diographs [12]. Even that the modality categoriza-
tion step is important in a medical image retrieval
context, it was not intensely researched because the
medical image retrieval approaches to this day, where
mostly concerned with the retrieval inside a certain
modality. There are a series of implementations for
different modalities like: KMeD and COBRA [4] [7]
that are treating MRI head images, ASSERT-system
that deals with lung CT images [24], I-Browse that

operates on histological slices [25], the system pre-
sented in [26] that investigate bone X-rays in oph-
thalmology, and another X-ray based system is pre-
sented in [[16] that describes the retrieval of tumor
shapes in mammogram X-rays. A more recent ap-
proach in [19] employs shape-analysis on spine X-
rays to automatically recognize a series of pre-defined
pathological patterns. Given the fact that the prin-
ciples used by each of these systems are dependent
of the particular conditions of diagnostics context,
including image modality, they are not applicable to
other cases.

For the experiments presented in this paper, only
6 modalities were considered. To treat real live
problems, like the CISMeF catalogue, the number
of modalities will grow to over 60 (e.g. doppler ul-
tasonogaphy, echocardiography, ...). Increasing the
number of modalities will complicate the problem,
and decrease results of the classification.

The best results, obtained with the MLP, are situ-
ated around 90%. This limitation is due to:

• the images that exist in our database, being
acquired from a real-live health-care environ-
ment, are covering a large scale of body regions,
pathologies or acquisition parameters. This re-
sults in a increased intra-modality variability,
making very difficult to generalize ... [Figure3]

• Furthermore, there are modalities that are visu-
ally, very close, like MRI an CT-scan or Angiog-
raphy and X-Ray [Figure4].

• The database is not equilibrated, meaning that
the repartition of the images in modalities is not
in concordance with the internal complexity of
each one. The Scintigraphy is clearly the most
under-represented, but given the significant vi-
sual difference, with regards to the other modal-
ities, the recognition rates are rather high [Ta-
ble matrice de confusion]. The X-ray class has
also a smaller number of images, and thus, the
poorer results of X-ray recognition are somehow
expliquable.

• The presence of Angiographys images saved in
negative and MRI-MRA(Magnetic Resonance
Angiography) perturbed even more the classify-
ing results. The first is used for better localize
some local characteristics (blood vessels) (fig).
The second is an MRI study of the blood vessels,
and thus has the appearance of an Angiograhy
[Figure5].

Since the beginning of this study, the CISMeF team
has already developed an exhaustive list of medical



Table 4: Individual or combined feature vectors
MLP SVM RF LMT K-NNhhhhhhhhhhhhhhhFeature

ClassifyMethod
Multi-layer Support Vector Random Forest Logistic Model K-Nearest

Perceptron Machines Tree Neighbours
method nf p(%) t(s) p(%) t(s) p(%) t(s) p(%) t(s) p(%) t(s)
Histogram (Histo) 256 69.21 19282 67.86 289 73.08 243 75.21 10183 71.59 69
Statistical measures (Stat) 7 64 198 62.77 40 64.40 30 66.10 1071 60.88 4
Co-occurrence (CO) 16 63.59 448 50.44 59 62.44 45 70.16 4037 58.77 9
Gabor (GB) 48 84.13 2024 74.71 58 81.83 55 83.81 13792 82.03 25
Stat+CO+DF+GB 72 89.55 5383 84.61 69 85.83 72 87.11 18889 86.84 41

Table 5: Feature selection
MLP SVM RF LMT K-NNhhhhhhhhhhhhhhhFeature

ClassifyMethod
Multi-layer Support Vector Random Forest Logistic Model K-Nearest

Perceptron Machines Tree Neighbours
method nf p(%) t(s) p(%) t(s) p(%) t(s) p(%) t(s) p(%) t(s)
(Stat+CO+DF+GB)FS1 9 80.27 236 75.45 32 82.44 16 81.62 1161 80.54 5
(Stat+CO+DF+GB)FS2 20 83.45 655 78.91 55 82.71 27 83.38 3903 82.50 12
(Stat+CO+DF+GB)FS3 10 77.55 296 73.49 49 82.16 19 80.74 1032 79.25 6
(Stat+CO+DF+GB)FS4 23 84.13 696 79.25 59 84.88 30 84.13 6145 85.55 13
(Stat+CO+DF+GB)FS5 70 89.15 5422 84.40 89 85.42 62 86.77 9032 87.05 36
(Stat+CO+DF+GB)FS5 50 87.32 3010 83.05 54 85.43 41 86.37 3942 85.69 30
(Stat+CO+DF+GB)FS5 30 86.71 1482 82.23 43 84.80 30 85.49 2023 84.88 16
(Stat+CO+DF+GB)FS6 70 88.81 4980 84.27 52 86.77 57 87.05 8522 86.54 36
(Stat+CO+DF+GB)FS6 50 88.67 3172 83.38 46 86.50 44 86.57 3920 86.30 30
(Stat+CO+DF+GB)FS6 30 84.47 1592 80.61 35 83.72 29 85.93 2002 84.54 16
(Stat+CO+DF+GB)FS7 70 89.35 5043 84.40 52 85.22 45 86.84 8720 87.05 37
(Stat+CO+DF+GB)FS7 50 89.42 3210 82.71 39 86.10 44 86.37 4013 86.03 28
(Stat+CO+DF+GB)FS7 30 86.84 1602 82.23 36 84.74 30 85.69 2112 84.88 16
(Stat+CO+DF+GB)FS8 70 90.50 5361 84.40 86 85.08 63 87.18 8647 87.05 38
(Stat+CO+DF+GB)FS8 50 88.06 2891 84.20 67 85.62 45 87.05 5292 86.30 25
(Stat+CO+DF+GB)FS8 30 86.57 1302 80.47 44 85.15 30 83.11 2963 84.67 17
(Stat+CO+DF+GB)FS9 72 82.23 408 78.91 41 82.91 21 82.57 672 85.83 6
(Stat+CO+DF+GB)FS10 70 88.99 5112 84.67 80 86.30 62 87.11 8920 86.64 37
(Stat+CO+DF+GB)FS10 50 88.33 3282 84.33 50 87.05 50 87.05 4120 87.11 27
(Stat+CO+DF+GB)FS10 30 87.79 1708 83.38 38 86.64 29 86.50 2103 86.23 16



Figure 3: Intra-classe variability. a).Angiography; b).Ultrasonography; c).MRI; d).X-Ray; e).CT Scan;
f).Scintigraphy

a) b) c) d)

e) f) g) h)

Figure 4: Confusion a) and b).MRI; c) and d).X-Ray; e) and f).CT-scan; g) and h).Angiography; The
confusion is between a-e, b-f, c-g and d-h



a) b) c)

d) e) f)

Figure 5: a). and d). Standard Angiography; b). and e). Negative Angiography; c). and f). Magnetic
Resonance Angiography

image (sub)types (N=65) derived from the MeSH
tree of diagnostic imaging. This image type list will
improve the resource type already developed in the
CISMeF terminology. The ultimate goal of the im-
age categorization algorithm will be to automatically
classify the N image types defined and not only the
main six modalities evaluated in this first phase.
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