Efficient validation and construction of border
arrays”

Jean-Pierre Duval Thierry Lecroq Arnaud Lefebvre

LITIS, University of Rouen, France,
{Jean-Pierre.Duval,Thierry.Lecroq,Arnaud.Lefebvre}@univ-rouen.fr

Abstract

In this article we present an on-line linear time and space algorithm
to check if an integer array f is the border array of at least one string w
built on a bounded or unbounded size alphabet ¥. We first show some
relations between the border array of some string w and the skeleton of
the DFA recognizing ¥* - w, independently of the explicit knowledge of w.
This enables us to design algorithms for validating and generating border
arrays that outperform existing ones [4, 3]. The validating algorithm
lowers the delay (time spent on one element of the array) from O(|w]) to
O(min{|X|, |w|}) comparing to algorithms in [4, 3]. Finally we give some
results on the numbers of distinct border arrays on some alphabet sizes.

1 Introduction

A border u of a string w is a prefix and a suffix of w such that v # w. The
computation of the border array of a string w i.e. of the borders of each prefix
of a string w is strongly related to the string matching problem: given a string
w, find the first or, more generally, all its occurrences in a longest string y. The
border array of w is better known as the “failure function” introduced in [7] (see
also [1]). In [4] (see also [10]) a method is presented to check if an integer array f
is a border array for some string w. The authors first give an on-line linear time
algorithm to verify if f is a border array on an unbounded size alphabet. Then
they give a more complex algorithm that works on a bounded size alphabet.
In [3] a simpler algorithm is presented for this case. Furthermore if f is a
border array we were able to build, on-line and in linear time, a string w on a
minimal size alphabet for which f is the border array. The resulting algorithm
is elegant and integrates three parts: the checking on an unbounded alphabet,
the checking on a bounded size alphabet and the design of the corresponding
string if f is a border array. The first two parts can work independently. In the

*This work was partially supported by the project MathStic ” Algorithmique génomique”
of the french CNRS.

present article we give a more elegant presentation of this result. Moreover we
present new results concerning the relation between the border array f and the
skeleton of the deterministic finite automaton recognizing >*-w. Actually these
results are completely independent from w. We then present a new linear time
and space on-line algorithm that checks if a given integer array is a border array
of some string. This algorithm lowers the delay (time spent on one element of
the array) from O(|w|) to O(min{|X|, |w|}) comparing the algorithms in [4, 3].
An easy extension of this algorithm enables to generate all the distinct border
arrays of some length in linear space and in time proportional to their number.
This is useful for generating minimal test sets for various string algorithms.
Finally, using this efficient construction algorithm, we count the number of
distinct border arrays for some alphabet sizes. These last results extend those
of [6].

The remaining of this article is organized as follows. The next section intro-
duces basic notions and notations on strings. Section 3 recalls known results on
the validation of border arrays. Section 4 presents our new results. Section 5
presents our new algorithm together with its correctness proof. In Section 6
we present results on the number of distinct border arrays. Finally we give our
conclusions and perspectives in Section 7.

2 Notations and definitions

A string is a sequence of zero or more symbols from an alphabet ¥. The set of
all strings over the alphabet ¥ is denoted by ¥*. We consider an alphabet of
size s; for 1 < i <'s, o[i] denotes the i-th symbol of 3. A string w of length n
is represented by w[l..n], where w[i] € ¥ for 1 < i < n. A string u is a prefiz
of w if w = wv for v € ¥*. Similarly, u is a suffiz of w if w = vu for v € ¥*. A
string u is a border of w if u is a prefix and a suffix of w and u # w. The border
of a string w is the longest of its borders. It is denoted by Border(w). The
border array f of a string w of length n is defined by: f[i] = |Border(w[1..i])]
for 1 < i < n and we artificially set f[0] = —1. It is also known as the “failure
function” of the Morris and Pratt string matching algorithm.
Ezxample 1 The border array of ababacaabcababa is the following:

1 | 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
wi] a b a b a c a a b ¢c a b a b a
jad -1 0 012 3 0 1 1 2 0 1 2 3 4 5

The deterministic finite automaton D(w) recognizing the language ¥* - w is
defined by D(w[l..n]) = (@, %, qo, T, F) where @ = {0,1,...,n} is the set of
states, X is the alphabet, ¢o = 0 is the initial state, T'= {n} is the set of accept-
ing states and F' = {(i,w[i + 1],i+ 1) | 1 <7 <n} U{(i,a,|Border(w[l..ila)|) |
1 <i<mnanda € ¥\ {w[i +1]}} is the set of transitions. The underly-
ing unlabeled graph is called the skeleton of the automaton. We denote by
0(4) the list (j | (4,a,j) € F witha € ¥ and j # 0) and by ¢’(7) the list
(]G, a,7) € FwithaeXand j & {0,i+1}) for 0 < i <n (see Figure 1). In

Figure 1: D(aabab). (a): Complete automaton. (b): Transitions leading to
state 0 are omitted. 6(4) = (5,2) and §'(4) = (2).

other words 0(4) is the list of the targets of the significant transitions leaving
state ¢ and ¢’(4) is the list of the targets of the backward significant transitions
leaving state .

The following definition introduces the notion of valid array.

Definition 1 An integer array f[1..n] is a valid array (or is valid) if and only
if it is the border array of at least one string w[l..n].

The four following definitions show how to represent the notion of border
array using trees.

Definition 2 Given an integer array f[1..n] such that 0 < f[i] < i we define
the relation f on [—1,n] as follows: ifj if and only if fj] =i with 0 < j < n.

Definition 3 f is the reflexive, symmetrical and transitive closure of relation
f on[1,n].

Definition 4 The relation R is defined by i Rj on [0,n + 1] if and only if
(i—1)f(j—1) with0 < j<n+1.

Definition 5 The R-path of j is the sequence of integer (jo,ji,-.-,Jk) Such
that jo Rj, jk =0 and j;+1 Rj; for 0 <i < k.

Figure 2 illustrates the previous notions on the border array of the string
aabab used in Figure 1.

Q f-class of 1, 2 and 4 ’ f-class of 3 ‘ f —class of 5

Figure 2: (i — 1)f(j — 1) iff i Rj. f is the reflexive, symmetrical and transitive
closure of f on [1,n]. The R-path of 5 is (2, 1,0).

3 Known results

Let f[1..n] be an integer array such that f[i] < i for 1 <i <n. For 1 <i <mn,
we define f1[i] = f[i] and for f[i] > 0, f[i] = f[f**[i]]. We use the following
notation: C(f,i) = (1+f[i—1],1+f%[i—1],...,1+f™[i—1]) where f™[i—1] = 0.

In [3], we state the following two necessary and sufficient conditions for an
integer array f to be a valid array:

1. f[1] =0 and for 2 < i < n, we have f[i] € (0) W C(f,1);

2. for i > 2 and for every j' + 1 € C(f,i) with 7'+ 1 > f[i], we have
fli"+ 1] # fli]-

Ezample 2 Consider the array f from Example 2:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Jff [0 0 1 2 3 0 1 1 2 0 1 2 3 4 5 7

C(f,16) = (f[15] + 1, FIFI15]) + 1, FIFLFOS]) + 1, F4115] + 1) = (6,4,2,).

The candidates for f[16] are in C(f,16) W (0) = (6,4,2,1,0). Among these
values 2 is not valid since f[4] = 2.

In [3], we devised an algorithm for verifying if an array f of n integers is
valid that checks all the candidates for each f[i] with 1 <4 < n. This algorithm
takes into account the size of the alphabet and when f[i] is equal to 0 it checks
if enough letters are available for f to be valid.

2 solutions:

fis1=2ands5is ir@
‘ fis1=0and5is ir’

Figure 3: Given f[1..4] a valid array. The R-path of 5 is (2,1,0) and 1 is in the
same f-class as 2, so f[5] can only take the values 2 or 0.

4 New results

In this section we will reformulate the results of [3] and extend the results to the
correspondence between the border array f and the skeleton of the deterministic
finite automaton recognizing ¥* - w for any string w for which f is the border
array.

The next proposition answers the following question: given an integer array
f[1..n] with n elements, does there exist a string w such that f is the border
array of w?

Proposition 1 f[1] = 0 is the only array with one element that is valid. Let
us assume that f[1..5] is valid. Then f[1..j + 1] is valid if and only if f[j + 1]
1s the largest element of the f-class of j + 1 on the R-path of 7+ 1.

Proof Similar to [3]. O
An example is given Figure 3 with f[1..4] = [0, 1,0, 1].

Definition 6 Two strings with the same length n are f-equivalent if and only
if they have the same border array.

The next proposition answers the following question: given a valid integer
array f, what are the f-equivalent strings associated to f?

Proposition 2 Given a valid integer array f, a string w has f for border array
if and only if the following conditions are fulfilled:

1. The letters whose indexes are in the same f-class are identical;

{1y

©-@ e TO0CO00O

0-@ -~ 00000@

Figure 4: Given f[1..5] a valid array. The letters at positions in {1,2,4} are
equal since they belong to the same f-class. They must be different from the
letters at positions 3 and 5 since they do not belong at the same f-class and they
appear in an R-path. The letter at positions 3 and 5 can be equal or different
since they do not appear both in a same R-path.

2. Two indexes in different f-classes on a same R-path must correspond to
two different letters.

Proof Similar to [3]. O
An example is given Figure 4 with f[1..5] =[0,1,0,1,0].
The following proposition is rewritten from [6].

Proposition 3 Let f be an integer array and 1 < j <n. If f[1..n] is the border
array of a string w and f[1..j] is the border array of a string u then there exists
a string v such that u-v is f-equivalent to w.

The following proposition shows how to build, from a border array f, the
skeleton of the automaton recognizing ¥* - w for any f-equivalent string w.

Proposition 4 §(0) = (1) and 6(j) = (j+1)Wo(f[j]) U(flj+1]) for1 < j<n
and §(n) = 6(f[n]).

Proof
Following the definition of the automaton, we have:

Jla)| [a € Z\{wlj+1]})
Jla)| | a €) U (|Border(w[l..7 + 1])|)
l’

1])
O

Ezxample 3 On the following skeleton, that comes from the automaton of
Figure 1:

= (j + D)w(|Border(w[1

0(7)= (j + 1)W(|Border(w[1.
— (i -+ Dealfl) 0 (717

G
OO 2D~

we indeed have:

j+1 W () Y fi+1] = 60)
1) o E =
2 & @O v @G = (2
3 & (2 o = (32
4 & O v 1 = ¢
G & (2 o = (52

¥ (1) U = (1

The next statement is a corollary of the previous proposition and gives the
construction of the border array f from the skeleton of an automaton.

Corollary 1 For j > 0:
fli+1) = { LD 93U) 3T U8G) is mot empty

otherwise.

Ezample 4 Using the skeleton of Example 4, we have:

o(fi) 9 0() = fli+1]
g 1) = 0
1n v 2 = 1
2 oY (382 = 0
Hn v 4 = 1
2 o (62 = 0

It is worth to note that the results of Proposition 4 and Corollary 1 are
completely independent from the letters of the underlying string w.

5 New algorithm

The definition of the automaton recognizing ¥* - w gives an efficient algorithm
for verifying if an array f of n integers is a valid array. Assuming that f[1..7]

Figure 5: Using the skeleton of the automaton corresponding to the border
array of Example 3, it is now easy to see that the candidates for f[16] are in
0'(15) W (0) = (6,4,1,0).

is valid, all the values for f[i 4+ 1] are in 6’(z) W (0) and they do not need to be
checked. An example is given Figure 5. Using Proposition 4, the skeleton of the
automaton is build on-line during the checking of the array f. If f[i+1] is equal
to 0, it is enough to check if the cardinality of ¢’(¢) is smaller than the alphabet
size s to ensure that f is valid up to position 7 + 1. The resulting algorithm is
the algorithm DLL(f,n,s) given below. It either outputs a string w of length
n on a minimal size alphabet for which f is the border array or the smallest
position ¢ for which f[1..i — 1] is valid and f[1..7] is not.

DLL(f,n,s)
1 if f[1] # 0 then
2 return f not valid at position 1

3 (1) — (1)
4 wll] « o[1]
5 for i« 2tondo
6 if f[i] =0 then
7 if card(d'(i —1)) > s then
8 return alphabet too small at position ¢
9 0'(7) < (1)
10 wli] « olcard(d' (i — 1)) + 1]
11 elseif f[i] € ¢'(i — 1) then
12 return f not valid at position ¢

13 0'(i = 1) « &'(i — 1) U (f[d])
14 §'(i) — &' (fli) W (fli] + 1)
15 wli] < w[f[i]

16 return w

Theorem 1 The algorithm DLL(f,n,s) checks if the array [of n integers is
valid on an alphabet of size s in time and space O(n).

Proof The correctness of the algorithm comes from the definition of the
automaton recognizing X* - w. The time and space linearity comes from the
fundamental result that in the automaton, there are only m backward significant
transitions [9]. O

We define the delay of the algorithm as the maximal time spent on one
element of the array. The next proposition states that the new algorithm lowers
the delay from O(n) to O(min{s,n}).

Proposition 5 The delay of the algorithm DLL(f,n,s) is O(min{s,n}).

Proof Since ¢’(i — 1) contains at most min{s,n} elements, the instruc-
tions from line 11 to line 15 of the algorithm DLL can be performed in time
O(min{s,n}). All the other instructions of the for loop of the algorithm DLL
can be performed in constant time. 0

An algorithm for generating all valid arrays becomes then obvious: all the
valid candidates for f[i] are in ¢’(i — 1) & (0). We thus have the following result.

Theorem 2 All the valid arrays of length n on an unbounded alphabet or on
an alphabet of size s can be generated in a time proportional to their number.

6 Counting distinct border arrays

Let B(n) be the number of distinct border arrays of length n on an unbounded
alphabet and let B(n,s) be the number of distinct border arrays of length n
on an alphabet of size s. Table 1 gives the number of distinct border arrays of
length 1 to 16 for an unbounded alphabet and alphabets of size 2 to 4.

Proposition 6 B(n,2) = 2"

The result of the previous proposition means that, since there are 2™ different
strings of length n on a binary alphabet, the f-equivalence on strings of a binary
alphabet amounts to an homomorphism on the letters.

Proposition 7 B(j,s) = B(j) for j < 2% and s > 2.

Proposition 8 B(2%,s) = B(2°) — 1 for s > 2. The missing border array
has the following form: 0.2° —1-0.2' —1...0..2°71 — 1. This border array
corresponds to the string ws - o[s + 1] (of length 2°) where ws is recursively
defined by: w1 = a and w; = w;—1 - oli] - wi—1 fori > 1.

Proof We prove by recurrence that the string w; has borders followed by
every letters from o[1] to o[i]. This is true for w;. Let us assume that this is
true for wy with 2 < k <4 —1. Then w; = w;—1 - o[i] - w;—1 has borders w;_1
and w;_1 - oi] is a prefix of w;. O

The string w; has already been shown to have the largest number of non-
deducible periods [2]. Tt appears in a large number of applications [8].

Ezample 5 The following array f[1..16] is valid on an alphabet of size at
least 5:

Table 1: Number of distinct border arrays on different alphabets.

B() | B(,2) B(i,3) B(,4)

1

1 1 1 1 1

2 2 2 2 2

3 4 4 4 4

4 9 8 9 9

) 20 16 20 20
6 47 32 47 47
7 110 64 110 110
8 263 128 262 263
9 630 256 626 630
10 1525 512 1509 1525

11| 3701 1024 3649 3701
12| 9039 | 2048 8872 9039
13| 22,140 | 4096 21,640 22,140
14 | 54,460 | 8192 52,993 54,460
15 | 134,339 | 16,384 130,159 134,339
16 | 332,439 | 32,768 320,696 332,438

9 10 11 12 13 14 15| 16

1 1 2 3 4 5 6 7 8
wyi] a b a ¢c a b a d a b a c a b a e
f14] 0o o1 o 1 2 3 01 2 3 4 5 6 7 0

7 Conclusions and perspectives

In this article we reformulated the notion used in [3] for verifying if a given inte-
ger array is a valid array. We extended these results to the relation between the
border array f and the skeleton of the deterministic finite automaton recogniz-
ing ¥* - w. This enables us to design a very efficient algorithm for verifying if a
given integer array is a valid array. This algorithm gives an efficient generation
method for generating all the distinct border arrays. Moreover we give here
some results on their numbers.
In [6] the authors give an upper bound of B(n) the number of distinct border
arrays of length n. It would be very interesting to get an exact analytical bound.
Let us recall the function g: g[j] = max{i | w[l..i — 1] is a suffix of w[l..j —
1] and wli] # wljl}.
We know that g[j] = max{5(j —1) — (j)} = max{5(f[j — 1]) - (f[1])}-
Function ¢ is known as the “failure function” of the Knuth-Morris-Pratt
string matching algorithm [5]. We intend to study the problem of verifying if
a given integer array is a valid “failure function” for the Knuth-Morris-Pratt
algorithm. However there does not exist the equivalence of Proposition 3 for g.

10

References

[1]

2]

[10]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1974.

J.-P. Duval. Contribution a l’étude du monoide libre. PhD thesis, Université
de Rouen, France, 1980.

J.-P. Duval, T. Lecroq, and A. Lefebvre. Border array on bounded alphabet.
Journal of Automata, Languages and Combinatorics, 10(1):51-60, 2005.

F. Franék, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang.
Verifying a border array in linear time. Journal on Combinatorial Mathe-
matics and Combinatorial Computing, 42:223-236, 2002.

D. E. Knuth, J. H. Morris, and V. R. Pratt Jr. Fast pattern matching in
strings. STAM Journal on Computing, 6(1):323-350, 1977.

D. Moore, W. F. Smyth, and D. Miller. Counting distinct strings. Algo-
rithmica, 23(1):1-13, 1999.

J. H. Morris and V. R. Pratt Jr. A linear pattern-matching algorithm.
Technical Report 40, University of California, Berkeley, 1970.
M. Naylor. Abacaba-dabacaba. http://www.ac.wwu.edu/~

mnaylor/abacaba/abacaba.html.

I. Simon. String matching algorithms and automata. In R. Baeza-Yates
and N. Ziviani, editors, Proceedings of the First South American Workshop
on String Processing, pages 151-157, Belo Horizonte, Brazil, 1993.

W. F. Smyth. Computing Pattern in Strings. Addison Wesley Pearson,
2003.

11

