
Efficient validation and construction of
Knuth–Morris–Pratt arrays

Jean-Pierre Duval Thierry Lecroq Arnaud Lefebvre

LITIS, Université de Rouen
{Jean-Pierre.Duval,Thierry.Lecroq,Arnaud.Lefebvre}@univ-rouen.fr

Abstract
Knuth-Morris-Pratt (KMP) arrays are known as the ”failure function”

of the Knuth-Morris-Pratt string matching algorithm. We present an
algorithm to check if an integer array is a KMP array. This gives a
method for computing all the distinct KMP arrays.

1 Introduction

A border u of a string w is a prefix and a suffix of w such that u != w. The
computation of the border array of a string w i.e. of the borders of each prefix
of a string w is strongly related to the string matching problem: given a string
w, find the first or, more generally, all its occurrences in a longer string y. The
border array of w is better known as the “failure function” introduced in [5].
In [3] a method is presented to check if an integer array f is a border array for
some string w. In [1], we gave a more elegant presentation of this result. In [2]
we lowered the delay (time spent on one element of the array) from O(|w|) to
O(min{|Σ|, |w|}) comparing to algorithms in [3, 1]. Moreover we presented new
results concerning the relation between the border array f and the skeleton of
the deterministic finite automaton recognizing Σ∗ · w.

In the present article we deal with KMP (Knuth-Morris-Pratt) arrays instead
of border arrays. KMP arrays are used as “failure function” in the Knuth-
Morris-Pratt string matching algorithms [4]. Given an integer array g, we can
decide if g is the KMP array of some string w on a bounded alphabet of size
s. If it is not, we can compute the longest prefix of g for which there exists a
string w such that the prefix of g is the KMP array of w. Actually these results
are completely independent from w. We are also capable of generating all the
distinct KMP arrays in time proportional to their numbers.

2 Notations and definitions

In the following we use an alphabet Σ of size s and σ[i] denotes the i-th letter of
Σ. A string u is a border of w if u is a prefix and a suffix of w and u != w. The

1

border of a string w is the longest of its borders. It is denoted by Border(w). The
border array fw of a string w of length n is defined by: fw[i] = |Border(w[1 . . i])|
for 1 ≤ i ≤ n. It is also known as the “failure function” of the Morris and Pratt
string matching algorithm [5].

The KMP array gw of a string w of length n is defined by: gw[1] = 0 and
gw[j] = max{{i | w[1 . . i − 1] suffix of w[1 . . j − 1] and w[i] != w[j]} ∪ {0}} or
equivalently gw[j] = 1 + max{{i | w[1 . . i] border of w[1 . . j − 1] and w[i + 1] !=
w[j]}∪ {−1}} for 2 ≤ j ≤ n. Array gw is known as the “failure function” of the
Knuth-Morris-Pratt string matching algorithm [4].

Example 1 The border and KMP arrays of ababacaabcababa are the follow-
ing:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
w[i] a b a b a c a a b c a b a b a
fw[i] 0 0 1 2 3 0 1 1 2 0 1 2 3 4 5
gw[i] 0 1 0 1 0 4 0 2 1 3 0 1 0 1 0

The following definition introduces the notion of valid arrays.

Definition 1 An integer array f [1 . . n] is a valid border array if and only if it
is the border array of at least one string w[1 . . n].

Definition 2 An integer array g[1 . . n] is a valid KMP array if and only if it
is the KMP array of at least one string w[1 . . n].

The deterministic finite automaton D(w) recognizing the language Σ∗ · w is
defined by D(w[1 . . n]) = (Q,Σ, q0, T, F) where Q = {0, 1, . . . , n} is the set of
states, Σ is the alphabet, q0 = 0 is the initial state, T = {n} is the set of accept-
ing states and F = {(i, w[i+1], i+1) | 1 ≤ i ≤ n}∪ {(i, a, |Border(w[1 . . i]a)|) |
1 ≤ i ≤ n and a ∈ Σ \ {w[i + 1]}} is the set of transitions. The underly-
ing unlabeled graph is called the skeleton of the automaton. We denote by
δw(i) the list (j | (i, a, j) ∈ F with a ∈ Σ and j != 0) and by δ′w(i) the list
(j | (i, a, j) ∈ F with a ∈ Σ and j !∈ {0, i + 1}) for 0 ≤ i ≤ n. In other words
δw(i) is the list of the targets of the significant transitions leaving state i and
δ′w(i) is the list of the targets of the backward significant transitions leaving
state i.

3 Known results

Let f [1 . . n] be an integer array such that f [i] < i for 1 ≤ i ≤ n.
The following proposition shows how to build, from a border array f , the

skeleton of the automaton recognizing Σ∗ · w for any string w having f as its
border array.

Proposition 1 δ(0) = (1) and δ(j) = (j+1)&δ(f [j]) ∪--- (f [j+1]) for 1 ≤ j < n
and δ(n) = δ(f [n]).

2

The next statement is a corollary of the previous proposition and gives the
construction of the border array f from the skeleton of an automaton.

Corollary 1 For j > 0:
f [j + 1] =

{
δ(f [j]) ∪--- δ(j) if δ(f [j]) ∪--- δ(j) is not empty,
0 otherwise.

4 New results

Two strings x and y can have the same KMP array and different border arrays.
Example 2 Consider the two strings x = abaab and y = abacb.

i 1 2 3 4 5
x[i] a b a a b
fx[i] 0 0 1 1 2
gx[i] 0 1 0 2 1

i 1 2 3 4 5
y[i] a b a c b
fy[i] 0 0 1 0 0
gy[i] 0 1 0 2 1

Given a valid KMP array g[1 . . i], an associated border array f [1 . . i] and
the skeleton of automaton δ′ the following propositions hold.

Proposition 2 Then g[i + 1] can either be equal to f [i] + 1 or to g[f [i] + 1].

Proposition 3 If g[i + 1] = g[f [i] + 1] then f [i + 1] = f [i] + 1.

Proposition 4 If g[i+1] = f [i]+1 then f [i+1] can be any value in δ′(i) ∪--- (f [i]+
1) & (0).

In order to check if a given integer array g of length n is a valid KMP array,
it is necessary to build along an associated border array f and a skeleton δ′.
When Proposition 4 applies the different choices are tried until one succeeds or
all fail.

The algorithm Verify(1), given in Figure 1, returns TRUE if an integer array
g of length n is valid and FALSE otherwise. When g is valid it moreover builds
a string w for which g is the KMP array. It assumes that the variables g, f , δ′,
α and w are global. It applies Propositions 2 to 4.

For instance, with the array g = 0·1·0·1·0·4·0·2·1·3·0·1·0·1·0 of Example 2,
the algorithm Verify produces the string w = ababacaabbababa enhancing the
fact that ababacaabcababa is not the smallest lexicographic string having g as
a KMP array.

Regarding the complexity, integer arrays g(n) of the form 0 · 1 · 0 · (2 · 1 · 0)∗ ·
(1|2 · 0|2 · 1 · 1) requires the following number of calls of the function Verify:

• 3(((n/3)× (n/3) + 1)/2) if n mod 3 = 1;

• 2 + 3((((n + 1)/3)× ((n + 1/)3) + 1)/2)− n/3 if n mod 3 = 0;

• 2 + 3((((n− 1)/3)× ((n− 1/)3) + 1)/2) + n/3 + 1 if n mod 3 = 2.

Experimentally we did not find other worse cases so we conjecture that the
function Verify is quadratic.

3

Verify(j)
1 if j = n + 1 then
2 return TRUE
3 else if g[j] != f [j − 1] + 1 then
4 if g[j] != g[f [j − 1] + 1] then
5 return FALSE
6 else (f [j], w[j]) ← (f [j − 1] + 1, w[f [j]])
7 δ(j − 1) ← δ(j − 1) ∪--- (f [j − 1] + 1) & (j)
8 (α[j], δ(j)) ← (α[f [j]], δ(f [j]))
9 return Verify(j + 1)

10 ēlse for k ∈ δ(j − 1) ∪--- (f [j − 1] + 1) do
11 (f [j], w[j]) ← (k, w[f [j]])
12 δ(j − 1) ← δ(j − 1) ∪--- (f [j]) & (j)
13 (α[j], δ(j)) ← (α[f [j]], δ(f [j]))
14 if Verify(j + 1) then
15 return TRUE
16 δ̄(j − 1) ← δ(j − 1) ∪--- (j) & (f [j])
17 ¯if α[j − 1] < s then
18 (f [j], w[j]) ← (0,α[j − 1])
19 α[j − 1] ← α[j − 1] + 1
20 δ(j − 1) ← δ(j − 1) & (j)
21 (α[j], δ(j)) ← (α[f [j]], δ(f [j]))
22 return Verify(j + 1)
23 else return FALSE

Figure 1: Verification of an integer array.

5 Counting distinct KMP arrays

In order to generate all the valid KMP array, we generate them along with an
associated border array and an automaton skeleton. Since a valid KMP array
can be generated from different border arrays, we need to store them. To that
aim we can use a lexicographic trie.

Let K(n) be the number of distinct KMP arrays of length n on an unbounded
alphabet and let K(n, s) be the number of distinct KMP arrays of length n on
an alphabet of size s. Table 1 gives the number of distinct KMP arrays of length
1 to 18 for an unbounded alphabet and alphabets of size 2 to 4.

K(5, 2) = K(5) − 1: the missing KMP array is 0 · 1 · 0 · 2 · 0, it is the
KMP array of abaca. K(10, 3) = K(10) − 2: the two missing KMP arrays are
0 ·1 ·0 ·2 ·0 ·1 ·0 ·4 ·0 ·1 and 0 ·1 ·0 ·2 ·0 ·1 ·0 ·4 ·1 ·1, they are the KMP arrays of
abacabadab and abacabadbb respectively. K(18, 4) = K(18) − 1: the missing
KMP array is 0 ·1 ·0 ·2 ·0 ·1 ·0 ·4 ·0 ·1 ·0 ·2 ·0 ·1 ·0 ·8 ·1 ·1, it is the KMP array of
abacabadabacabaebb. Let w1 = σ[1]. Let wi = wi−1 · σ[i] · wi−1 for i > 1. Let
g1 = 0. Let gi = gi−1 · 2i · gi−1 for i > 1. For i ≥ 4, K(2i +2, i) = K(2i +2)− 1:

4

Table 1: Number of distinct KMP arrays on different alphabets.

i K(i) K(i, 2) K(i, 3) K(i, 4) i K(i) K(i, 2) K(i, 3) K(i, 4)
1 1 1 1 1 10 1106 512 1104 1106
2 2 2 2 2 11 2656 1024 2644 2656
3 4 4 4 4 12 6414 2048 6365 6414
4 8 8 8 8 13 15,582 4096 15,406 15,582
5 17 16 17 17 14 38,011 8192 37,430 38,011
6 37 32 37 37 15 93,124 16,384 91,317 93,124
7 85 64 85 85 16 228,927 32,768 223,524 228,927
8 197 128 197 197 17 564,674 65,536 548,969 564,674
9 465 256 465 465 18 1,396,860 131,072 1,352,193 1,396,859

the missing KMP array is gi · 1 · 1, it is the KMP array of wi · σ[2] · σ[2].

References

[1] J.-P. Duval, T. Lecroq, and A. Lefebvre. Border array on bounded alphabet.
J. Autom. Lang. Comb., 10(1):51–60, 2005.

[2] J.-P. Duval, T. Lecroq, and A. Lefebvre. Efficient validation and construction
of border arrays. In Proceedings of the Mons Days of Theoretical Computer
Science (JM 2006), pages 179–189, Rennes, France, 2006.

[3] F. Franěk, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang.
Verifying a border array in linear time. J. Comb. Math. Comb. Comp.,
42:223–236, 2002.

[4] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(1):323–350, 1977.

[5] J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm.
Report 40, University of California, Berkeley, 1970.

5

