Efficient validation and construction of Knuth–Morris–Pratt arrays

Jean-Pierre Duval Thierry Lecroq Arnaud Lefebvre

LITIS, Université de Rouen {Jean-Pierre.Duval, Thierry.Lecroq, Arnaud.Lefebvre}@univ-rouen.fr

Abstract

Knuth-Morris-Pratt (KMP) arrays are known as the "failure function" of the Knuth-Morris-Pratt string matching algorithm. We present an algorithm to check if an integer array is a KMP array. This gives a method for computing all the distinct KMP arrays.

1 Introduction

A border u of a string w is a prefix and a suffix of w such that $u \neq w$. The computation of the border array of a string w i.e. of the borders of each prefix of a string w is strongly related to the string matching problem: given a string w, find the first or, more generally, all its occurrences in a longer string y. The border array of w is better known as the "failure function" introduced in [5]. In [3] a method is presented to check if an integer array f is a border array for some string w. In [1], we gave a more elegant presentation of this result. In [2] we lowered the delay (time spent on one element of the array) from O(|w|) to $O(\min\{|\Sigma|, |w|\})$ comparing to algorithms in [3, 1]. Moreover we presented new results concerning the relation between the border array f and the skeleton of the deterministic finite automaton recognizing $\Sigma^* \cdot w$.

In the present article we deal with KMP (Knuth-Morris-Pratt) arrays instead of border arrays. KMP arrays are used as "failure function" in the Knuth-Morris-Pratt string matching algorithms [4]. Given an integer array g, we can decide if g is the KMP array of some string w on a bounded alphabet of size s. If it is not, we can compute the longest prefix of g for which there exists a string w such that the prefix of g is the KMP array of w. Actually these results are completely independent from w. We are also capable of generating all the distinct KMP arrays in time proportional to their numbers.

2 Notations and definitions

In the following we use an alphabet Σ of size s and $\sigma[i]$ denotes the i-th letter of Σ . A string u is a border of w if u is a prefix and a suffix of w and $u \neq w$. The

border of a string w is the longest of its borders. It is denoted by Border(w). The border array f_w of a string w of length n is defined by: $f_w[i] = |Border(w[1..i])|$ for $1 \le i \le n$. It is also known as the "failure function" of the Morris and Pratt string matching algorithm [5].

The KMP array g_w of a string w of length n is defined by: $g_w[1] = 0$ and $g_w[j] = \max\{\{i \mid w[1 \ldots i-1] \text{ suffix of } w[1 \ldots j-1] \text{ and } w[i] \neq w[j]\} \cup \{0\}\}$ or equivalently $g_w[j] = 1 + \max\{\{i \mid w[1 \ldots i] \text{ border of } w[1 \ldots j-1] \text{ and } w[i+1] \neq w[j]\} \cup \{-1\}\}$ for $2 \leq j \leq n$. Array g_w is known as the "failure function" of the Knuth-Morris-Pratt string matching algorithm [4].

 $\it Example~1$ The border and KMP arrays of ababacaabcababa are the following:

i															
$w[i] \ f_w[i]$	a	b	a	b	a	С	a	a	b	С	a	b	a	b	a
$f_w[i]$	0	0	1	2	3	0	1	1	2	0	1	2	3	4	5
$g_w[i]$	0	1	0	1	0	4	0	2	1	3	0	1	0	1	0

The following definition introduces the notion of valid arrays.

Definition 1 An integer array f[1..n] is a valid border array if and only if it is the border array of at least one string w[1..n].

Definition 2 An integer array g[1..n] is a valid KMP array if and only if it is the KMP array of at least one string w[1..n].

The deterministic finite automaton $\mathcal{D}(w)$ recognizing the language $\Sigma^* \cdot w$ is defined by $\mathcal{D}(w[1 \dots n]) = (Q, \Sigma, q_0, T, F)$ where $Q = \{0, 1, \dots, n\}$ is the set of states, Σ is the alphabet, $q_0 = 0$ is the initial state, $T = \{n\}$ is the set of accepting states and $F = \{(i, w[i+1], i+1) \mid 1 \leq i \leq n\} \cup \{(i, a, |Border(w[1 \dots i]a)|) \mid 1 \leq i \leq n \text{ and } a \in \Sigma \setminus \{w[i+1]\}\}$ is the set of transitions. The underlying unlabeled graph is called the *skeleton* of the automaton. We denote by $\delta_w(i)$ the list $(j \mid (i, a, j) \in F \text{ with } a \in \Sigma \text{ and } j \neq 0)$ and by $\delta'_w(i)$ the list $(j \mid (i, a, j) \in F \text{ with } a \in \Sigma \text{ and } j \neq 0)$ for $0 \leq i \leq n$. In other words $\delta_w(i)$ is the list of the targets of the significant transitions leaving state i and $\delta'_w(i)$ is the list of the targets of the backward significant transitions leaving state i.

3 Known results

Let f[1..n] be an integer array such that f[i] < i for $1 \le i \le n$.

The following proposition shows how to build, from a border array f, the skeleton of the automaton recognizing $\Sigma^* \cdot w$ for any string w having f as its border array.

Proposition 1 $\delta(0) = (1)$ and $\delta(j) = (j+1) \uplus \delta(f[j]) \uplus (f[j+1])$ for $1 \le j < n$ and $\delta(n) = \delta(f[n])$.

The next statement is a corollary of the previous proposition and gives the construction of the border array f from the skeleton of an automaton.

Corollary 1 For
$$j > 0$$
:

$$f[j+1] = \begin{cases} \delta(f[j]) \cup \delta(j) & \text{if } \delta(f[j]) \cup \delta(j) \text{ is not empty,} \\ 0 & \text{otherwise.} \end{cases}$$

4 New results

Two strings x and y can have the same KMP array and different border arrays. Example 2 Consider the two strings x = abaab and y = abacb.

i	1	2	3	4	5	i	1	2	3	4	5
x[i]	a	b	a	a	b	y[i]	a	b	a	С	b
$f_x[i]$	0	0	1	1	2	$f_y[i]$	0	0	1	0	0
$g_x[i]$	0	1	0	2	1	$g_y[i]$	0	1	0	2	1

Given a valid KMP array g[1...i], an associated border array f[1...i] and the skeleton of automaton δ' the following propositions hold.

Proposition 2 Then g[i+1] can either be equal to f[i]+1 or to g[f[i]+1].

Proposition 3 If
$$g[i+1] = g[f[i]+1]$$
 then $f[i+1] = f[i]+1$.

Proposition 4 If g[i+1] = f[i]+1 then f[i+1] can be any value in $\delta'(i) \cup (f[i]+1) \cup (0)$.

In order to check if a given integer array g of length n is a valid KMP array, it is necessary to build along an associated border array f and a skeleton δ' . When Proposition 4 applies the different choices are tried until one succeeds or all fail.

The algorithm VERIFY(1), given in Figure 1, returns TRUE if an integer array g of length n is valid and FALSE otherwise. When g is valid it moreover builds a string w for which g is the KMP array. It assumes that the variables g, f, δ' , α and w are global. It applies Propositions 2 to 4.

For instance, with the array $g = 0 \cdot 1 \cdot 0 \cdot 1 \cdot 0 \cdot 4 \cdot 0 \cdot 2 \cdot 1 \cdot 3 \cdot 0 \cdot 1 \cdot 0 \cdot 1 \cdot 0$ of Example 2, the algorithm Verify produces the string w = ababacaabbaba enhancing the fact that ababacaabcababa is not the smallest lexicographic string having g as a KMP array.

Regarding the complexity, integer arrays g(n) of the form $0 \cdot 1 \cdot 0 \cdot (2 \cdot 1 \cdot 0)^* \cdot (1|2 \cdot 0|2 \cdot 1 \cdot 1)$ requires the following number of calls of the function VERIFY:

- $3(((n/3) \times (n/3) + 1)/2)$ if $n \mod 3 = 1$;
- $2 + 3((((n+1)/3) \times ((n+1/3) + 1)/2) n/3$ if $n \mod 3 = 0$;
- $2 + 3((((n-1)/3) \times ((n-1/3) + 1)/2) + n/3 + 1 \text{ if } n \text{ mod } 3 = 2.$

Experimentally we did not find other worse cases so we conjecture that the function Verify is quadratic.

```
Verify(j)
   1 if j = n + 1 then
      return TRUE
      else if g[j] \neq f[j-1] + 1 then
            if g[j] \neq g[f[j-1]+1] then
   4
   5
               return FALSE
   6
            else (f[j], w[j]) \leftarrow (f[j-1] + 1, w[f[j]])
   7
               (\alpha[j], \delta(j)) \leftarrow (\alpha[f[j]], \delta(f[j]))
   8
   9
               return Verify(j+1)
 10
         else for k \in \delta(j-1) \cup (f[j-1]+1) do
               (f[j], w[j]) \leftarrow (k, w[f[j]])
 11
               \delta(j-1) \leftarrow \delta(j-1) \uplus (f[j]) \uplus (j)
 12
                (\alpha[j], \delta(j)) \leftarrow (\alpha[f[j]], \delta(f[j]))
 13
               if VERIFY(j+1) then
 14
                return TRUE
 15
               \delta(j-1) \leftarrow \delta(j-1) \uplus (j) \uplus (f[j])
 16
 17
            if \alpha[j-1] < s then
               (f[j], w[j]) \leftarrow (0, \alpha[j-1])
 18
               \alpha[j-1] \leftarrow \alpha[j-1] + 1
 19
               \delta(j-1) \leftarrow \delta(j-1) \uplus (j)
 20
               (\alpha[j], \delta(j)) \leftarrow (\alpha[f[j]], \delta(f[j]))
 21
               return Verify(j+1)
 22
            else return FALSE
 23
```

Figure 1: Verification of an integer array.

5 Counting distinct KMP arrays

In order to generate all the valid KMP array, we generate them along with an associated border array and an automaton skeleton. Since a valid KMP array can be generated from different border arrays, we need to store them. To that aim we can use a lexicographic trie.

Let K(n) be the number of distinct KMP arrays of length n on an unbounded alphabet and let K(n,s) be the number of distinct KMP arrays of length n on an alphabet of size s. Table 1 gives the number of distinct KMP arrays of length 1 to 18 for an unbounded alphabet and alphabets of size 2 to 4.

K(5,2)=K(5)-1: the missing KMP array is $0\cdot 1\cdot 0\cdot 2\cdot 0$, it is the KMP array of abaca. K(10,3)=K(10)-2: the two missing KMP arrays are $0\cdot 1\cdot 0\cdot 2\cdot 0\cdot 1\cdot 0\cdot 4\cdot 0\cdot 1$ and $0\cdot 1\cdot 0\cdot 2\cdot 0\cdot 1\cdot 0\cdot 4\cdot 1\cdot 1$, they are the KMP arrays of abacabadab and abacabadbb respectively. K(18,4)=K(18)-1: the missing KMP array is $0\cdot 1\cdot 0\cdot 2\cdot 0\cdot 1\cdot 0\cdot 4\cdot 0\cdot 1\cdot 0\cdot 2\cdot 0\cdot 1\cdot 0\cdot 8\cdot 1\cdot 1$, it is the KMP array of abacabadabacabaebb. Let $w_1=\sigma[1]$. Let $w_i=w_{i-1}\cdot \sigma[i]\cdot w_{i-1}$ for i>1. Let $g_1=0$. Let $g_i=g_{i-1}\cdot 2^i\cdot g_{i-1}$ for i>1. For $i\geq 4$, $K(2^i+2,i)=K(2^i+2)-1$:

Table 1: Number of distinct KMP arrays on different alphabets.

\overline{i}	K(i)	K(i,2)	K(i,3)	K(i,4)	i	K(i)	K(i,2)	K(i,3)	K(i,4)
1	1	1	1	1	10	1106	512	1104	1106
2	2	2	2	2	11	2656	1024	2644	2656
3	4	4	4	4	12	6414	2048	6365	6414
4	8	8	8	8	13	15,582	4096	$15,\!406$	$15,\!582$
5	17	16	17	17	14	38,011	8192	$37,\!430$	38,011
6	37	32	37	37	15	93,124	16,384	$91,\!317$	93,124
7	85	64	85	85	16	228,927	32,768	$223,\!524$	228,927
8	197	128	197	197	17	564,674	65,536	548,969	$564,\!674$
9	465	256	465	465	18	1,396,860	131,072	$1,\!352,\!193$	1,396,859

the missing KMP array is $g_i \cdot 1 \cdot 1$, it is the KMP array of $w_i \cdot \sigma[2] \cdot \sigma[2]$.

References

- [1] J.-P. Duval, T. Lecroq, and A. Lefebvre. Border array on bounded alphabet. J. Autom. Lang. Comb., 10(1):51–60, 2005.
- [2] J.-P. Duval, T. Lecroq, and A. Lefebvre. Efficient validation and construction of border arrays. In *Proceedings of the Mons Days of Theoretical Computer Science (JM 2006)*, pages 179–189, Rennes, France, 2006.
- [3] F. Franěk, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang. Verifying a border array in linear time. *J. Comb. Math. Comb. Comp.*, 42:223–236, 2002.
- [4] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM J. Comput., 6(1):323–350, 1977.
- [5] J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm. Report 40, University of California, Berkeley, 1970.